Dynamic response of pulsatile flow of blood in a stenosed tapered artery
The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtoni...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2018-07, Vol.41 (10), p.3885-3899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3899 |
---|---|
container_issue | 10 |
container_start_page | 3885 |
container_title | Mathematical methods in the applied sciences |
container_volume | 41 |
creator | Mukhopadhyay, Subrata Mandal, Mani Shankar Mukhopadhyay, Swati |
description | The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations. |
doi_str_mv | 10.1002/mma.4874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057173555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057173555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSZo07XFZP1bYxYueQ5Im0KVtatKy9N-bdb16mReGh3eYB6F7AisCQJ-6Tq1YKdgFWhCoqowwUVyiBRABGaOEXaObGA8AUBJCF2j7PPeqawwONg6-jxZ7h4epjWpsWotd64-njW69r3HTY4XjaHsfbY1HNdiQUoXRhvkWXTnVRnv3l0v09fryudlmu4-39816lxla5SzLGRU5EGodOF1yY3WhAApd1kbrypA6VzwNbmlZl64gWjmmmXBOmarWTOdL9HDuHYL_nmwc5cFPoU8nJQUuiMg554l6PFMm-BiDdXIITafCLAnIkyeZPMmTp4RmZ_SYHp7_5eR-v_7lfwBN_2mk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057173555</pqid></control><display><type>article</type><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><source>Access via Wiley Online Library</source><creator>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</creator><creatorcontrib>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</creatorcontrib><description>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4874</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Axial stress ; Blood flow ; Dynamic response ; Equations of motion ; Finite difference method ; finite difference technique ; flow separation ; Graphical representations ; Nonlinear equations ; pulsatile flow ; Rheological properties ; Rheology ; Shear stress ; stenosis ; stream function‐vorticity method ; Tapering ; Vorticity ; wall shear stress ; Wall shear stresses</subject><ispartof>Mathematical methods in the applied sciences, 2018-07, Vol.41 (10), p.3885-3899</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</citedby><cites>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</cites><orcidid>0000-0002-4134-0904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Subrata</creatorcontrib><creatorcontrib>Mandal, Mani Shankar</creatorcontrib><creatorcontrib>Mukhopadhyay, Swati</creatorcontrib><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><title>Mathematical methods in the applied sciences</title><description>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</description><subject>Axial stress</subject><subject>Blood flow</subject><subject>Dynamic response</subject><subject>Equations of motion</subject><subject>Finite difference method</subject><subject>finite difference technique</subject><subject>flow separation</subject><subject>Graphical representations</subject><subject>Nonlinear equations</subject><subject>pulsatile flow</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>stenosis</subject><subject>stream function‐vorticity method</subject><subject>Tapering</subject><subject>Vorticity</subject><subject>wall shear stress</subject><subject>Wall shear stresses</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSZo07XFZP1bYxYueQ5Im0KVtatKy9N-bdb16mReGh3eYB6F7AisCQJ-6Tq1YKdgFWhCoqowwUVyiBRABGaOEXaObGA8AUBJCF2j7PPeqawwONg6-jxZ7h4epjWpsWotd64-njW69r3HTY4XjaHsfbY1HNdiQUoXRhvkWXTnVRnv3l0v09fryudlmu4-39816lxla5SzLGRU5EGodOF1yY3WhAApd1kbrypA6VzwNbmlZl64gWjmmmXBOmarWTOdL9HDuHYL_nmwc5cFPoU8nJQUuiMg554l6PFMm-BiDdXIITafCLAnIkyeZPMmTp4RmZ_SYHp7_5eR-v_7lfwBN_2mk</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Mukhopadhyay, Subrata</creator><creator>Mandal, Mani Shankar</creator><creator>Mukhopadhyay, Swati</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4134-0904</orcidid></search><sort><creationdate>20180715</creationdate><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><author>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axial stress</topic><topic>Blood flow</topic><topic>Dynamic response</topic><topic>Equations of motion</topic><topic>Finite difference method</topic><topic>finite difference technique</topic><topic>flow separation</topic><topic>Graphical representations</topic><topic>Nonlinear equations</topic><topic>pulsatile flow</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>stenosis</topic><topic>stream function‐vorticity method</topic><topic>Tapering</topic><topic>Vorticity</topic><topic>wall shear stress</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Subrata</creatorcontrib><creatorcontrib>Mandal, Mani Shankar</creatorcontrib><creatorcontrib>Mukhopadhyay, Swati</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Subrata</au><au>Mandal, Mani Shankar</au><au>Mukhopadhyay, Swati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>41</volume><issue>10</issue><spage>3885</spage><epage>3899</epage><pages>3885-3899</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4874</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4134-0904</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2018-07, Vol.41 (10), p.3885-3899 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2057173555 |
source | Access via Wiley Online Library |
subjects | Axial stress Blood flow Dynamic response Equations of motion Finite difference method finite difference technique flow separation Graphical representations Nonlinear equations pulsatile flow Rheological properties Rheology Shear stress stenosis stream function‐vorticity method Tapering Vorticity wall shear stress Wall shear stresses |
title | Dynamic response of pulsatile flow of blood in a stenosed tapered artery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20pulsatile%20flow%20of%20blood%20in%20a%20stenosed%20tapered%20artery&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mukhopadhyay,%20Subrata&rft.date=2018-07-15&rft.volume=41&rft.issue=10&rft.spage=3885&rft.epage=3899&rft.pages=3885-3899&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4874&rft_dat=%3Cproquest_cross%3E2057173555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057173555&rft_id=info:pmid/&rfr_iscdi=true |