Dynamic response of pulsatile flow of blood in a stenosed tapered artery

The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtoni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-07, Vol.41 (10), p.3885-3899
Hauptverfasser: Mukhopadhyay, Subrata, Mandal, Mani Shankar, Mukhopadhyay, Swati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3899
container_issue 10
container_start_page 3885
container_title Mathematical methods in the applied sciences
container_volume 41
creator Mukhopadhyay, Subrata
Mandal, Mani Shankar
Mukhopadhyay, Swati
description The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.
doi_str_mv 10.1002/mma.4874
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2057173555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057173555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSZo07XFZP1bYxYueQ5Im0KVtatKy9N-bdb16mReGh3eYB6F7AisCQJ-6Tq1YKdgFWhCoqowwUVyiBRABGaOEXaObGA8AUBJCF2j7PPeqawwONg6-jxZ7h4epjWpsWotd64-njW69r3HTY4XjaHsfbY1HNdiQUoXRhvkWXTnVRnv3l0v09fryudlmu4-39816lxla5SzLGRU5EGodOF1yY3WhAApd1kbrypA6VzwNbmlZl64gWjmmmXBOmarWTOdL9HDuHYL_nmwc5cFPoU8nJQUuiMg554l6PFMm-BiDdXIITafCLAnIkyeZPMmTp4RmZ_SYHp7_5eR-v_7lfwBN_2mk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057173555</pqid></control><display><type>article</type><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><source>Access via Wiley Online Library</source><creator>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</creator><creatorcontrib>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</creatorcontrib><description>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.4874</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Axial stress ; Blood flow ; Dynamic response ; Equations of motion ; Finite difference method ; finite difference technique ; flow separation ; Graphical representations ; Nonlinear equations ; pulsatile flow ; Rheological properties ; Rheology ; Shear stress ; stenosis ; stream function‐vorticity method ; Tapering ; Vorticity ; wall shear stress ; Wall shear stresses</subject><ispartof>Mathematical methods in the applied sciences, 2018-07, Vol.41 (10), p.3885-3899</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</citedby><cites>FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</cites><orcidid>0000-0002-4134-0904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.4874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.4874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Mukhopadhyay, Subrata</creatorcontrib><creatorcontrib>Mandal, Mani Shankar</creatorcontrib><creatorcontrib>Mukhopadhyay, Swati</creatorcontrib><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><title>Mathematical methods in the applied sciences</title><description>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</description><subject>Axial stress</subject><subject>Blood flow</subject><subject>Dynamic response</subject><subject>Equations of motion</subject><subject>Finite difference method</subject><subject>finite difference technique</subject><subject>flow separation</subject><subject>Graphical representations</subject><subject>Nonlinear equations</subject><subject>pulsatile flow</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>stenosis</subject><subject>stream function‐vorticity method</subject><subject>Tapering</subject><subject>Vorticity</subject><subject>wall shear stress</subject><subject>Wall shear stresses</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK6CPyHgxUvXSZo07XFZP1bYxYueQ5Im0KVtatKy9N-bdb16mReGh3eYB6F7AisCQJ-6Tq1YKdgFWhCoqowwUVyiBRABGaOEXaObGA8AUBJCF2j7PPeqawwONg6-jxZ7h4epjWpsWotd64-njW69r3HTY4XjaHsfbY1HNdiQUoXRhvkWXTnVRnv3l0v09fryudlmu4-39816lxla5SzLGRU5EGodOF1yY3WhAApd1kbrypA6VzwNbmlZl64gWjmmmXBOmarWTOdL9HDuHYL_nmwc5cFPoU8nJQUuiMg554l6PFMm-BiDdXIITafCLAnIkyeZPMmTp4RmZ_SYHp7_5eR-v_7lfwBN_2mk</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Mukhopadhyay, Subrata</creator><creator>Mandal, Mani Shankar</creator><creator>Mukhopadhyay, Swati</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4134-0904</orcidid></search><sort><creationdate>20180715</creationdate><title>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</title><author>Mukhopadhyay, Subrata ; Mandal, Mani Shankar ; Mukhopadhyay, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-34273012ef0fb85ceb6a006b8dcbb9c1d3a51d35e28d8f61baf4b47ffac9db4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Axial stress</topic><topic>Blood flow</topic><topic>Dynamic response</topic><topic>Equations of motion</topic><topic>Finite difference method</topic><topic>finite difference technique</topic><topic>flow separation</topic><topic>Graphical representations</topic><topic>Nonlinear equations</topic><topic>pulsatile flow</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>stenosis</topic><topic>stream function‐vorticity method</topic><topic>Tapering</topic><topic>Vorticity</topic><topic>wall shear stress</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukhopadhyay, Subrata</creatorcontrib><creatorcontrib>Mandal, Mani Shankar</creatorcontrib><creatorcontrib>Mukhopadhyay, Swati</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukhopadhyay, Subrata</au><au>Mandal, Mani Shankar</au><au>Mukhopadhyay, Swati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic response of pulsatile flow of blood in a stenosed tapered artery</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>41</volume><issue>10</issue><spage>3885</spage><epage>3899</epage><pages>3885-3899</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>The aim of this paper is to throw some light on the rheological study of pulsatile blood flow in a stenosed tapered arterial segment. Arterial wall is considered to be rigid and flexible separately for improving the similarity to the in vivo situation. The streaming blood is considered to be Newtonian. The governing nonlinear equations of motion are sought using the well‐known stream function‐vorticity method and are solved numerically by finite difference technique. Important rheological parameters, such as axial velocity component, wall shear stress, and flow separation region are estimated in the neighborhood of the stenosis. Effects of stenosis height, vessel tapering, and wall flexibility on the blood flow are investigated properly and are explained in detail through their graphical representations.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.4874</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4134-0904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-07, Vol.41 (10), p.3885-3899
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2057173555
source Access via Wiley Online Library
subjects Axial stress
Blood flow
Dynamic response
Equations of motion
Finite difference method
finite difference technique
flow separation
Graphical representations
Nonlinear equations
pulsatile flow
Rheological properties
Rheology
Shear stress
stenosis
stream function‐vorticity method
Tapering
Vorticity
wall shear stress
Wall shear stresses
title Dynamic response of pulsatile flow of blood in a stenosed tapered artery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T15%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20response%20of%20pulsatile%20flow%20of%20blood%20in%20a%20stenosed%20tapered%20artery&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mukhopadhyay,%20Subrata&rft.date=2018-07-15&rft.volume=41&rft.issue=10&rft.spage=3885&rft.epage=3899&rft.pages=3885-3899&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.4874&rft_dat=%3Cproquest_cross%3E2057173555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057173555&rft_id=info:pmid/&rfr_iscdi=true