Compact high order finite volume method on unstructured grids III: Variational reconstruction
This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier–Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction po...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-05, Vol.337, p.1-26 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of computational physics |
container_volume | 337 |
creator | Wang, Qian Ren, Yu-Xin Pan, Jianhua Li, Wanai |
description | This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier–Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction. |
doi_str_mv | 10.1016/j.jcp.2017.02.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056463859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117301249</els_id><sourcerecordid>2056463859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-34a74f9e474991eeb6d9069d97356ad3e316c54ce3f5ccdd975703610dd7696f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIMouK5-AG8Bz60vTZtu9CSLfwoLXtSbhJq87qbsNjVJF_z2RnbPnh4MM8O8HyHXDHIGTNz2ea_HvABW51DkwNkJmTGQkBU1E6dkBlCwTErJzslFCD0ALKpyMSOfS7cbWx3pxq431HmDnnZ2sBHp3m2nHdIdxo0z1A10GkL0k46TR0PX3ppAm6a5ox-tt220bmi31KN2R1sSLslZ124DXh3vnLw_Pb4tX7LV63OzfFhlmhdVzHjZ1mUnsazLtBDxSxgJQhpZ80q0hiNnQlelRt5VWpukVzVwwcCYWkjR8Tm5OfSO3n1PGKLq3eTTnqAKqEQp-KKSycUOLu1dCB47NXq7a_2PYqD-KKpeJYrqj6KCQiWKKXN_yGCav7foVdAWB43GplejMs7-k_4Fkb565Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056463859</pqid></control><display><type>article</type><title>Compact high order finite volume method on unstructured grids III: Variational reconstruction</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Qian ; Ren, Yu-Xin ; Pan, Jianhua ; Li, Wanai</creator><creatorcontrib>Wang, Qian ; Ren, Yu-Xin ; Pan, Jianhua ; Li, Wanai</creatorcontrib><description>This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier–Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.02.031</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational efficiency ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Computing time ; Finite element analysis ; Finite volume method ; High order finite volume method ; Interfacial jump integration ; Iterative methods ; Linear equations ; Navier-Stokes equations ; Polynomials ; Reconstruction ; Reconstruction and time integration coupled iteration method ; Studies ; Time integration ; Unstructured grids ; Unstructured grids (mathematics) ; Variational reconstruction</subject><ispartof>Journal of computational physics, 2017-05, Vol.337, p.1-26</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-34a74f9e474991eeb6d9069d97356ad3e316c54ce3f5ccdd975703610dd7696f3</citedby><cites>FETCH-LOGICAL-c325t-34a74f9e474991eeb6d9069d97356ad3e316c54ce3f5ccdd975703610dd7696f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117301249$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Ren, Yu-Xin</creatorcontrib><creatorcontrib>Pan, Jianhua</creatorcontrib><creatorcontrib>Li, Wanai</creatorcontrib><title>Compact high order finite volume method on unstructured grids III: Variational reconstruction</title><title>Journal of computational physics</title><description>This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier–Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction.</description><subject>Computational efficiency</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Finite element analysis</subject><subject>Finite volume method</subject><subject>High order finite volume method</subject><subject>Interfacial jump integration</subject><subject>Iterative methods</subject><subject>Linear equations</subject><subject>Navier-Stokes equations</subject><subject>Polynomials</subject><subject>Reconstruction</subject><subject>Reconstruction and time integration coupled iteration method</subject><subject>Studies</subject><subject>Time integration</subject><subject>Unstructured grids</subject><subject>Unstructured grids (mathematics)</subject><subject>Variational reconstruction</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAUxIMouK5-AG8Bz60vTZtu9CSLfwoLXtSbhJq87qbsNjVJF_z2RnbPnh4MM8O8HyHXDHIGTNz2ea_HvABW51DkwNkJmTGQkBU1E6dkBlCwTErJzslFCD0ALKpyMSOfS7cbWx3pxq431HmDnnZ2sBHp3m2nHdIdxo0z1A10GkL0k46TR0PX3ppAm6a5ox-tt220bmi31KN2R1sSLslZ124DXh3vnLw_Pb4tX7LV63OzfFhlmhdVzHjZ1mUnsazLtBDxSxgJQhpZ80q0hiNnQlelRt5VWpukVzVwwcCYWkjR8Tm5OfSO3n1PGKLq3eTTnqAKqEQp-KKSycUOLu1dCB47NXq7a_2PYqD-KKpeJYrqj6KCQiWKKXN_yGCav7foVdAWB43GplejMs7-k_4Fkb565Q</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Wang, Qian</creator><creator>Ren, Yu-Xin</creator><creator>Pan, Jianhua</creator><creator>Li, Wanai</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170515</creationdate><title>Compact high order finite volume method on unstructured grids III: Variational reconstruction</title><author>Wang, Qian ; Ren, Yu-Xin ; Pan, Jianhua ; Li, Wanai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-34a74f9e474991eeb6d9069d97356ad3e316c54ce3f5ccdd975703610dd7696f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational efficiency</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Finite element analysis</topic><topic>Finite volume method</topic><topic>High order finite volume method</topic><topic>Interfacial jump integration</topic><topic>Iterative methods</topic><topic>Linear equations</topic><topic>Navier-Stokes equations</topic><topic>Polynomials</topic><topic>Reconstruction</topic><topic>Reconstruction and time integration coupled iteration method</topic><topic>Studies</topic><topic>Time integration</topic><topic>Unstructured grids</topic><topic>Unstructured grids (mathematics)</topic><topic>Variational reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Ren, Yu-Xin</creatorcontrib><creatorcontrib>Pan, Jianhua</creatorcontrib><creatorcontrib>Li, Wanai</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qian</au><au>Ren, Yu-Xin</au><au>Pan, Jianhua</au><au>Li, Wanai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact high order finite volume method on unstructured grids III: Variational reconstruction</atitle><jtitle>Journal of computational physics</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>337</volume><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper presents a variational reconstruction for the high order finite volume method in solving the two-dimensional Navier–Stokes equations on arbitrary unstructured grids. In the variational reconstruction, an interfacial jump integration is defined to measure the jumps of the reconstruction polynomial and its spatial derivatives on each cell interface. The system of linear equations to determine the reconstruction polynomials is derived by minimizing the total interfacial jump integration in the computational domain using the variational method. On each control volume, the derived equations are implicit relations between the coefficients of the reconstruction polynomials defined on a compact stencil involving only the current cell and its direct face-neighbors. The reconstruction and time integration coupled iteration method proposed in our previous paper is used to achieve high computational efficiency. A problem-independent shock detector and the WBAP limiter are used to suppress non-physical oscillations in the simulation of flow with discontinuities. The advantages of the finite volume method using the variational reconstruction over the compact least-squares finite volume method proposed in our previous papers are higher accuracy, higher computational efficiency, more flexible boundary treatment and non-singularity of the reconstruction matrix. A number of numerical test cases are solved to verify the accuracy, efficiency and shock-capturing capability of the finite volume method using the variational reconstruction.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.02.031</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-05, Vol.337, p.1-26 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2056463859 |
source | Elsevier ScienceDirect Journals |
subjects | Computational efficiency Computational fluid dynamics Computational physics Computer simulation Computing time Finite element analysis Finite volume method High order finite volume method Interfacial jump integration Iterative methods Linear equations Navier-Stokes equations Polynomials Reconstruction Reconstruction and time integration coupled iteration method Studies Time integration Unstructured grids Unstructured grids (mathematics) Variational reconstruction |
title | Compact high order finite volume method on unstructured grids III: Variational reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20high%20order%20finite%20volume%20method%20on%20unstructured%20grids%20III:%20Variational%20reconstruction&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wang,%20Qian&rft.date=2017-05-15&rft.volume=337&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.02.031&rft_dat=%3Cproquest_cross%3E2056463859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056463859&rft_id=info:pmid/&rft_els_id=S0021999117301249&rfr_iscdi=true |