Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries
Hollow silica (H-SiO2) spheres are prepared via a self-assembly approach without sacrificial templates. To address the poor electrical conductivity and mechanical stability problems of H-SiO2, carbon coating is adopted to modify the H-SiO2 spheres through a facile solution-mixing method. In the obta...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2018-05, Vol.744, p.7-14 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | Journal of alloys and compounds |
container_volume | 744 |
creator | Jiang, Ying Mu, Daobin Chen, Shi Wu, Borong Zhao, Zhikun Wu, Yizhou Ding, Zepeng Wu, Feng |
description | Hollow silica (H-SiO2) spheres are prepared via a self-assembly approach without sacrificial templates. To address the poor electrical conductivity and mechanical stability problems of H-SiO2, carbon coating is adopted to modify the H-SiO2 spheres through a facile solution-mixing method. In the obtained micron-level H-SiO2/C composite, the carbon coating layer can act as a mechanical support layer to maintain the structure stability of the H-SiO2 spheres, while the inner hollow space can accommodate the volume expansion during cycling. Moreover, the N-doped carbon can provide a fast electron transfer channel for the H-SiO2/C electrode during lithiation/delithiation process, helping the electrode exhibiting significantly improved cycling and rate performance. The reversible capacity of the H-SiO2/C electrode after 400 cycles is 564.0 mA h g−1 at a current density of 200 mA g−1, with a capacity retention of 88.3% as against the first cycle. The electrode delivers a reversible capacity of 423.1 mA h g−1, 280.8 mA h g−1 and 190.3 mA h g−1 at the current density of 1 A g−1, 3 A g−1 and 5 A g−1, respectively. This work provides a facile strategy for the large-scale production of H-SiO2/C anode materials for LIBs.
[Display omitted]
•Hollow silica spheres are prepared without sacrificial templates.•A facile solution-mixing carbon coating process is adopted.•The carbon provides mechanical support and fast electron transfer channel.•The micron-level H-SiO2/C composite exhibits improved cyclic/rate performance. |
doi_str_mv | 10.1016/j.jallcom.2018.02.073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056463020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838818305140</els_id><sourcerecordid>2056463020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-2d6c548349bc9cab9f08250a85545a8d6a205ef215c86ff22730a1fd6584258c3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKs_QQh43nWSbNLsSaSoFQpe9Byy2YRmyTY12Vr896a0dy8zDPO-N8xD6J5ATYCIx6EedAgmjjUFImugNSzYBZoRuWBVI0R7iWbQUl5JJuU1usl5AADSMjJD_SqGEA84--CNxnm3sclmfPDTBjttfLDY6NTFLR5j713RTL4MOmNd6jb2Fo96ssnrgF1MOBTQ78fqKOr0dNzYfIuunA7Z3p37HH29vnwuV9X64-19-byuDFs0U0V7YXgjWdN2pjW6ax1IykFLzhuuZS80BW4dJdxI4RylCwaauF5w2VAuDZujh5PvLsXvvc2TGuI-bctJVUjRCAYUioqfVCbFnJN1apf8qNOvIqCOgapBnQNVx0AVUFUCLdzTibPlhR9vk8rG262xvU_WTKqP_h-HPw2ngfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056463020</pqid></control><display><type>article</type><title>Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Ying ; Mu, Daobin ; Chen, Shi ; Wu, Borong ; Zhao, Zhikun ; Wu, Yizhou ; Ding, Zepeng ; Wu, Feng</creator><creatorcontrib>Jiang, Ying ; Mu, Daobin ; Chen, Shi ; Wu, Borong ; Zhao, Zhikun ; Wu, Yizhou ; Ding, Zepeng ; Wu, Feng</creatorcontrib><description>Hollow silica (H-SiO2) spheres are prepared via a self-assembly approach without sacrificial templates. To address the poor electrical conductivity and mechanical stability problems of H-SiO2, carbon coating is adopted to modify the H-SiO2 spheres through a facile solution-mixing method. In the obtained micron-level H-SiO2/C composite, the carbon coating layer can act as a mechanical support layer to maintain the structure stability of the H-SiO2 spheres, while the inner hollow space can accommodate the volume expansion during cycling. Moreover, the N-doped carbon can provide a fast electron transfer channel for the H-SiO2/C electrode during lithiation/delithiation process, helping the electrode exhibiting significantly improved cycling and rate performance. The reversible capacity of the H-SiO2/C electrode after 400 cycles is 564.0 mA h g−1 at a current density of 200 mA g−1, with a capacity retention of 88.3% as against the first cycle. The electrode delivers a reversible capacity of 423.1 mA h g−1, 280.8 mA h g−1 and 190.3 mA h g−1 at the current density of 1 A g−1, 3 A g−1 and 5 A g−1, respectively. This work provides a facile strategy for the large-scale production of H-SiO2/C anode materials for LIBs.
[Display omitted]
•Hollow silica spheres are prepared without sacrificial templates.•A facile solution-mixing carbon coating process is adopted.•The carbon provides mechanical support and fast electron transfer channel.•The micron-level H-SiO2/C composite exhibits improved cyclic/rate performance.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.02.073</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodes ; Batteries ; Carbon modification ; Conductivity ; Current density ; Cycles ; Electrical resistivity ; Electrode materials ; Electrodes ; Electron transfer ; Hollow structure ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Rechargeable batteries ; Self-assembly ; Silica ; Silica/carbon anode ; Silicon dioxide ; Structural stability</subject><ispartof>Journal of alloys and compounds, 2018-05, Vol.744, p.7-14</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-2d6c548349bc9cab9f08250a85545a8d6a205ef215c86ff22730a1fd6584258c3</citedby><cites>FETCH-LOGICAL-c374t-2d6c548349bc9cab9f08250a85545a8d6a205ef215c86ff22730a1fd6584258c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838818305140$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Mu, Daobin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Borong</creatorcontrib><creatorcontrib>Zhao, Zhikun</creatorcontrib><creatorcontrib>Wu, Yizhou</creatorcontrib><creatorcontrib>Ding, Zepeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><title>Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries</title><title>Journal of alloys and compounds</title><description>Hollow silica (H-SiO2) spheres are prepared via a self-assembly approach without sacrificial templates. To address the poor electrical conductivity and mechanical stability problems of H-SiO2, carbon coating is adopted to modify the H-SiO2 spheres through a facile solution-mixing method. In the obtained micron-level H-SiO2/C composite, the carbon coating layer can act as a mechanical support layer to maintain the structure stability of the H-SiO2 spheres, while the inner hollow space can accommodate the volume expansion during cycling. Moreover, the N-doped carbon can provide a fast electron transfer channel for the H-SiO2/C electrode during lithiation/delithiation process, helping the electrode exhibiting significantly improved cycling and rate performance. The reversible capacity of the H-SiO2/C electrode after 400 cycles is 564.0 mA h g−1 at a current density of 200 mA g−1, with a capacity retention of 88.3% as against the first cycle. The electrode delivers a reversible capacity of 423.1 mA h g−1, 280.8 mA h g−1 and 190.3 mA h g−1 at the current density of 1 A g−1, 3 A g−1 and 5 A g−1, respectively. This work provides a facile strategy for the large-scale production of H-SiO2/C anode materials for LIBs.
[Display omitted]
•Hollow silica spheres are prepared without sacrificial templates.•A facile solution-mixing carbon coating process is adopted.•The carbon provides mechanical support and fast electron transfer channel.•The micron-level H-SiO2/C composite exhibits improved cyclic/rate performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon modification</subject><subject>Conductivity</subject><subject>Current density</subject><subject>Cycles</subject><subject>Electrical resistivity</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Hollow structure</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Rechargeable batteries</subject><subject>Self-assembly</subject><subject>Silica</subject><subject>Silica/carbon anode</subject><subject>Silicon dioxide</subject><subject>Structural stability</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKs_QQh43nWSbNLsSaSoFQpe9Byy2YRmyTY12Vr896a0dy8zDPO-N8xD6J5ATYCIx6EedAgmjjUFImugNSzYBZoRuWBVI0R7iWbQUl5JJuU1usl5AADSMjJD_SqGEA84--CNxnm3sclmfPDTBjttfLDY6NTFLR5j713RTL4MOmNd6jb2Fo96ssnrgF1MOBTQ78fqKOr0dNzYfIuunA7Z3p37HH29vnwuV9X64-19-byuDFs0U0V7YXgjWdN2pjW6ax1IykFLzhuuZS80BW4dJdxI4RylCwaauF5w2VAuDZujh5PvLsXvvc2TGuI-bctJVUjRCAYUioqfVCbFnJN1apf8qNOvIqCOgapBnQNVx0AVUFUCLdzTibPlhR9vk8rG262xvU_WTKqP_h-HPw2ngfI</recordid><startdate>20180505</startdate><enddate>20180505</enddate><creator>Jiang, Ying</creator><creator>Mu, Daobin</creator><creator>Chen, Shi</creator><creator>Wu, Borong</creator><creator>Zhao, Zhikun</creator><creator>Wu, Yizhou</creator><creator>Ding, Zepeng</creator><creator>Wu, Feng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180505</creationdate><title>Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries</title><author>Jiang, Ying ; Mu, Daobin ; Chen, Shi ; Wu, Borong ; Zhao, Zhikun ; Wu, Yizhou ; Ding, Zepeng ; Wu, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-2d6c548349bc9cab9f08250a85545a8d6a205ef215c86ff22730a1fd6584258c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon modification</topic><topic>Conductivity</topic><topic>Current density</topic><topic>Cycles</topic><topic>Electrical resistivity</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Hollow structure</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Rechargeable batteries</topic><topic>Self-assembly</topic><topic>Silica</topic><topic>Silica/carbon anode</topic><topic>Silicon dioxide</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Ying</creatorcontrib><creatorcontrib>Mu, Daobin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Borong</creatorcontrib><creatorcontrib>Zhao, Zhikun</creatorcontrib><creatorcontrib>Wu, Yizhou</creatorcontrib><creatorcontrib>Ding, Zepeng</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Ying</au><au>Mu, Daobin</au><au>Chen, Shi</au><au>Wu, Borong</au><au>Zhao, Zhikun</au><au>Wu, Yizhou</au><au>Ding, Zepeng</au><au>Wu, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-05-05</date><risdate>2018</risdate><volume>744</volume><spage>7</spage><epage>14</epage><pages>7-14</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Hollow silica (H-SiO2) spheres are prepared via a self-assembly approach without sacrificial templates. To address the poor electrical conductivity and mechanical stability problems of H-SiO2, carbon coating is adopted to modify the H-SiO2 spheres through a facile solution-mixing method. In the obtained micron-level H-SiO2/C composite, the carbon coating layer can act as a mechanical support layer to maintain the structure stability of the H-SiO2 spheres, while the inner hollow space can accommodate the volume expansion during cycling. Moreover, the N-doped carbon can provide a fast electron transfer channel for the H-SiO2/C electrode during lithiation/delithiation process, helping the electrode exhibiting significantly improved cycling and rate performance. The reversible capacity of the H-SiO2/C electrode after 400 cycles is 564.0 mA h g−1 at a current density of 200 mA g−1, with a capacity retention of 88.3% as against the first cycle. The electrode delivers a reversible capacity of 423.1 mA h g−1, 280.8 mA h g−1 and 190.3 mA h g−1 at the current density of 1 A g−1, 3 A g−1 and 5 A g−1, respectively. This work provides a facile strategy for the large-scale production of H-SiO2/C anode materials for LIBs.
[Display omitted]
•Hollow silica spheres are prepared without sacrificial templates.•A facile solution-mixing carbon coating process is adopted.•The carbon provides mechanical support and fast electron transfer channel.•The micron-level H-SiO2/C composite exhibits improved cyclic/rate performance.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2018.02.073</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-05, Vol.744, p.7-14 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2056463020 |
source | Elsevier ScienceDirect Journals |
subjects | Anodes Batteries Carbon modification Conductivity Current density Cycles Electrical resistivity Electrode materials Electrodes Electron transfer Hollow structure Lithium Lithium-ion batteries Lithium-ion battery Rechargeable batteries Self-assembly Silica Silica/carbon anode Silicon dioxide Structural stability |
title | Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20silica%20spheres%20with%20facile%20carbon%20modification%20as%20an%20anode%20material%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Jiang,%20Ying&rft.date=2018-05-05&rft.volume=744&rft.spage=7&rft.epage=14&rft.pages=7-14&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.02.073&rft_dat=%3Cproquest_cross%3E2056463020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056463020&rft_id=info:pmid/&rft_els_id=S0925838818305140&rfr_iscdi=true |