FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION

Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2018-08, Vol.34 (4), p.705-753
Hauptverfasser: Phillips, Peter C.B., Shi, Shu-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 753
container_issue 4
container_start_page 705
container_title Econometric theory
container_volume 34
creator Phillips, Peter C.B.
Shi, Shu-Ping
description Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.
doi_str_mv 10.1017/S0266466617000202
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2056419552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466617000202</cupid><jstor_id>26613585</jstor_id><sourcerecordid>26613585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</originalsourceid><addsrcrecordid>eNp1UMtOg0AUnRhNxOoHuDAhcY3eOy9gSSutJEhNsW4JMIMpsVJn6MK_F9JGF8bVSc4zOYRcI9whoH-fA5WSSynRBwAK9IQ4yGXocSbhlDij7I36ObmwtgVAGvrMIThPsiibJVHqTtfTaRq7ydNzusyTZeZG2YO7il_jVR4PuFjF-UhfkrOmfLf66ogTsp7HL7NHL10uklmUerWQ2HsUFEitg0rqOkRVQVhXClRQhkIJyQIUFaW8YbUUitWlBl7SQKHwOQRNJXw2IbeH3p3pPvfa9kXb7c3HMFlQEJJjKAQdXHhw1aaz1uim2JnNtjRfBUIxPlP8eWbI3Bwyre078xMYbMhEIAadHTvLbWU26k3_Tv_f-g3AZ2g-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056419552</pqid></control><display><type>article</type><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Phillips, Peter C.B. ; Shi, Shu-Ping</creator><creatorcontrib>Phillips, Peter C.B. ; Shi, Shu-Ping</creatorcontrib><description>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466617000202</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Econometrics ; Economic models ; Economic theory ; Flexibility ; NASDAQ trading ; Recovery ; Securities markets</subject><ispartof>Econometric theory, 2018-08, Vol.34 (4), p.705-753</ispartof><rights>Copyright © Cambridge University Press 2017</rights><rights>Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</citedby><cites>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26613585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466617000202/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Shi, Shu-Ping</creatorcontrib><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Flexibility</subject><subject>NASDAQ trading</subject><subject>Recovery</subject><subject>Securities markets</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOg0AUnRhNxOoHuDAhcY3eOy9gSSutJEhNsW4JMIMpsVJn6MK_F9JGF8bVSc4zOYRcI9whoH-fA5WSSynRBwAK9IQ4yGXocSbhlDij7I36ObmwtgVAGvrMIThPsiibJVHqTtfTaRq7ydNzusyTZeZG2YO7il_jVR4PuFjF-UhfkrOmfLf66ogTsp7HL7NHL10uklmUerWQ2HsUFEitg0rqOkRVQVhXClRQhkIJyQIUFaW8YbUUitWlBl7SQKHwOQRNJXw2IbeH3p3pPvfa9kXb7c3HMFlQEJJjKAQdXHhw1aaz1uim2JnNtjRfBUIxPlP8eWbI3Bwyre078xMYbMhEIAadHTvLbWU26k3_Tv_f-g3AZ2g-</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Phillips, Peter C.B.</creator><creator>Shi, Shu-Ping</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180801</creationdate><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><author>Phillips, Peter C.B. ; Shi, Shu-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Flexibility</topic><topic>NASDAQ trading</topic><topic>Recovery</topic><topic>Securities markets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Shi, Shu-Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Peter C.B.</au><au>Shi, Shu-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>705</spage><epage>753</epage><pages>705-753</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466617000202</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2018-08, Vol.34 (4), p.705-753
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_journals_2056419552
source Jstor Complete Legacy; Cambridge University Press Journals Complete
subjects Econometrics
Economic models
Economic theory
Flexibility
NASDAQ trading
Recovery
Securities markets
title FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINANCIAL%20BUBBLE%20IMPLOSION%20AND%20REVERSE%20REGRESSION&rft.jtitle=Econometric%20theory&rft.au=Phillips,%20Peter%20C.B.&rft.date=2018-08-01&rft.volume=34&rft.issue=4&rft.spage=705&rft.epage=753&rft.pages=705-753&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466617000202&rft_dat=%3Cjstor_proqu%3E26613585%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056419552&rft_id=info:pmid/&rft_cupid=10_1017_S0266466617000202&rft_jstor_id=26613585&rfr_iscdi=true