FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION
Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first s...
Gespeichert in:
Veröffentlicht in: | Econometric theory 2018-08, Vol.34 (4), p.705-753 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 753 |
---|---|
container_issue | 4 |
container_start_page | 705 |
container_title | Econometric theory |
container_volume | 34 |
creator | Phillips, Peter C.B. Shi, Shu-Ping |
description | Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market. |
doi_str_mv | 10.1017/S0266466617000202 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2056419552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466617000202</cupid><jstor_id>26613585</jstor_id><sourcerecordid>26613585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</originalsourceid><addsrcrecordid>eNp1UMtOg0AUnRhNxOoHuDAhcY3eOy9gSSutJEhNsW4JMIMpsVJn6MK_F9JGF8bVSc4zOYRcI9whoH-fA5WSSynRBwAK9IQ4yGXocSbhlDij7I36ObmwtgVAGvrMIThPsiibJVHqTtfTaRq7ydNzusyTZeZG2YO7il_jVR4PuFjF-UhfkrOmfLf66ogTsp7HL7NHL10uklmUerWQ2HsUFEitg0rqOkRVQVhXClRQhkIJyQIUFaW8YbUUitWlBl7SQKHwOQRNJXw2IbeH3p3pPvfa9kXb7c3HMFlQEJJjKAQdXHhw1aaz1uim2JnNtjRfBUIxPlP8eWbI3Bwyre078xMYbMhEIAadHTvLbWU26k3_Tv_f-g3AZ2g-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056419552</pqid></control><display><type>article</type><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><source>Jstor Complete Legacy</source><source>Cambridge University Press Journals Complete</source><creator>Phillips, Peter C.B. ; Shi, Shu-Ping</creator><creatorcontrib>Phillips, Peter C.B. ; Shi, Shu-Ping</creatorcontrib><description>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466617000202</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Econometrics ; Economic models ; Economic theory ; Flexibility ; NASDAQ trading ; Recovery ; Securities markets</subject><ispartof>Econometric theory, 2018-08, Vol.34 (4), p.705-753</ispartof><rights>Copyright © Cambridge University Press 2017</rights><rights>Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</citedby><cites>FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26613585$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466617000202/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,799,27903,27904,55606,57995,58228</link.rule.ids></links><search><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Shi, Shu-Ping</creatorcontrib><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</description><subject>Econometrics</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Flexibility</subject><subject>NASDAQ trading</subject><subject>Recovery</subject><subject>Securities markets</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOg0AUnRhNxOoHuDAhcY3eOy9gSSutJEhNsW4JMIMpsVJn6MK_F9JGF8bVSc4zOYRcI9whoH-fA5WSSynRBwAK9IQ4yGXocSbhlDij7I36ObmwtgVAGvrMIThPsiibJVHqTtfTaRq7ydNzusyTZeZG2YO7il_jVR4PuFjF-UhfkrOmfLf66ogTsp7HL7NHL10uklmUerWQ2HsUFEitg0rqOkRVQVhXClRQhkIJyQIUFaW8YbUUitWlBl7SQKHwOQRNJXw2IbeH3p3pPvfa9kXb7c3HMFlQEJJjKAQdXHhw1aaz1uim2JnNtjRfBUIxPlP8eWbI3Bwyre078xMYbMhEIAadHTvLbWU26k3_Tv_f-g3AZ2g-</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Phillips, Peter C.B.</creator><creator>Shi, Shu-Ping</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180801</creationdate><title>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</title><author>Phillips, Peter C.B. ; Shi, Shu-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-20d06ee8b6ec91db09cbd0d8a95d563815b224f3c65d3cae04a28d157408fb573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Econometrics</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Flexibility</topic><topic>NASDAQ trading</topic><topic>Recovery</topic><topic>Securities markets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Shi, Shu-Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phillips, Peter C.B.</au><au>Shi, Shu-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>34</volume><issue>4</issue><spage>705</spage><epage>753</epage><pages>705-753</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper first strengthens the theoretical foundation of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2015a,b, PSY) by developing analytics and studying the performance characteristics of the testing algorithm under alternative forms of bubble implosion which capture various return paths to market normalcy. Second, we propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. A real-time version of the strategy is provided that is suited for practical implementation. Simulations explore the finite sample performance of the strategy for dating market recovery. The use of the PSY strategy for bubble monitoring and the new procedure for crisis detection are illustrated with an application to the Nasdaq stock market.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466617000202</doi><tpages>49</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4666 |
ispartof | Econometric theory, 2018-08, Vol.34 (4), p.705-753 |
issn | 0266-4666 1469-4360 |
language | eng |
recordid | cdi_proquest_journals_2056419552 |
source | Jstor Complete Legacy; Cambridge University Press Journals Complete |
subjects | Econometrics Economic models Economic theory Flexibility NASDAQ trading Recovery Securities markets |
title | FINANCIAL BUBBLE IMPLOSION AND REVERSE REGRESSION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FINANCIAL%20BUBBLE%20IMPLOSION%20AND%20REVERSE%20REGRESSION&rft.jtitle=Econometric%20theory&rft.au=Phillips,%20Peter%20C.B.&rft.date=2018-08-01&rft.volume=34&rft.issue=4&rft.spage=705&rft.epage=753&rft.pages=705-753&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466617000202&rft_dat=%3Cjstor_proqu%3E26613585%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056419552&rft_id=info:pmid/&rft_cupid=10_1017_S0266466617000202&rft_jstor_id=26613585&rfr_iscdi=true |