The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry

The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical Society reviews 2018-06, Vol.47 (12), p.4642-4664
Hauptverfasser: Liu, Yuzhong, O'Keeffe, Michael, Treacy, Michael M. J, Yaghi, Omar M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4664
container_issue 12
container_start_page 4642
container_title Chemical Society reviews
container_volume 47
creator Liu, Yuzhong
O'Keeffe, Michael
Treacy, Michael M. J
Yaghi, Omar M
description The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis. The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.
doi_str_mv 10.1039/c7cs00695k
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2056391129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035245140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</originalsourceid><addsrcrecordid>eNpdkctL9DAUxYMoOo5u3H8ScCNiNY-2adzJ4AsFF-q6ZNIbrbZNTVof_71XR_3ARUi4-eWcHA4hW5wdcCb1oVU2Mpbr7GmJTHiasyRVabpMJkyyPGGMizWyHuMjnrjKxSpZE1qJvFBiQt5uH4Deg29hCO_UO9pDqH1VW_rU-SHu094379YM0JkOIjVdRV_BvNTdPXXBt9RQ-wBtbU3z-TL2YIf6BY5w3tTzYFDT-UADDLUdGxMWdESvDbLiTBNh83ufkrvTk9vZeXJ1fXYxO75KbMrkkBgrBGg9dwpXBlKyIjWWga5kkUmMU5hcOW4NsKLIwGnOgWmnRGUR1FJOye5Ctw_-eYQ4lOhvoWkwjx9jKZjMRJpxdJuSnT_oox9Dh79DKsslaguN1N6CssHHGMCVfahbTFpyVn72Uc7U7Oarj0uEt78lx3kL1S_6UwAC_xZAiPb39n-h8gMe9pB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056391129</pqid></control><display><type>article</type><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</creator><creatorcontrib>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</creatorcontrib><description>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis. The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c7cs00695k</identifier><identifier>PMID: 29726872</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Crystal structure ; Knots ; Organic chemistry</subject><ispartof>Chemical Society reviews, 2018-06, Vol.47 (12), p.4642-4664</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</citedby><cites>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</cites><orcidid>0000-0002-6552-1363 ; 0000-0001-5614-1951 ; 0000-0002-5611-3325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29726872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>O'Keeffe, Michael</creatorcontrib><creatorcontrib>Treacy, Michael M. J</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis. The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</description><subject>Crystal structure</subject><subject>Knots</subject><subject>Organic chemistry</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctL9DAUxYMoOo5u3H8ScCNiNY-2adzJ4AsFF-q6ZNIbrbZNTVof_71XR_3ARUi4-eWcHA4hW5wdcCb1oVU2Mpbr7GmJTHiasyRVabpMJkyyPGGMizWyHuMjnrjKxSpZE1qJvFBiQt5uH4Deg29hCO_UO9pDqH1VW_rU-SHu094379YM0JkOIjVdRV_BvNTdPXXBt9RQ-wBtbU3z-TL2YIf6BY5w3tTzYFDT-UADDLUdGxMWdESvDbLiTBNh83ufkrvTk9vZeXJ1fXYxO75KbMrkkBgrBGg9dwpXBlKyIjWWga5kkUmMU5hcOW4NsKLIwGnOgWmnRGUR1FJOye5Ctw_-eYQ4lOhvoWkwjx9jKZjMRJpxdJuSnT_oox9Dh79DKsslaguN1N6CssHHGMCVfahbTFpyVn72Uc7U7Oarj0uEt78lx3kL1S_6UwAC_xZAiPb39n-h8gMe9pB2</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Liu, Yuzhong</creator><creator>O'Keeffe, Michael</creator><creator>Treacy, Michael M. J</creator><creator>Yaghi, Omar M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6552-1363</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid><orcidid>https://orcid.org/0000-0002-5611-3325</orcidid></search><sort><creationdate>20180618</creationdate><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><author>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal structure</topic><topic>Knots</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>O'Keeffe, Michael</creatorcontrib><creatorcontrib>Treacy, Michael M. J</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuzhong</au><au>O'Keeffe, Michael</au><au>Treacy, Michael M. J</au><au>Yaghi, Omar M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2018-06-18</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>4642</spage><epage>4664</epage><pages>4642-4664</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis. The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29726872</pmid><doi>10.1039/c7cs00695k</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6552-1363</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid><orcidid>https://orcid.org/0000-0002-5611-3325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-0012
ispartof Chemical Society reviews, 2018-06, Vol.47 (12), p.4642-4664
issn 0306-0012
1460-4744
language eng
recordid cdi_proquest_journals_2056391129
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Crystal structure
Knots
Organic chemistry
title The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20of%20periodic%20knots,%20polycatenanes%20and%20weaving%20from%20a%20chemical%20perspective:%20a%20library%20for%20reticular%20chemistry&rft.jtitle=Chemical%20Society%20reviews&rft.au=Liu,%20Yuzhong&rft.date=2018-06-18&rft.volume=47&rft.issue=12&rft.spage=4642&rft.epage=4664&rft.pages=4642-4664&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c7cs00695k&rft_dat=%3Cproquest_rsc_p%3E2035245140%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056391129&rft_id=info:pmid/29726872&rfr_iscdi=true