The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry
The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explai...
Gespeichert in:
Veröffentlicht in: | Chemical Society reviews 2018-06, Vol.47 (12), p.4642-4664 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4664 |
---|---|
container_issue | 12 |
container_start_page | 4642 |
container_title | Chemical Society reviews |
container_volume | 47 |
creator | Liu, Yuzhong O'Keeffe, Michael Treacy, Michael M. J Yaghi, Omar M |
description | The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis.
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings. |
doi_str_mv | 10.1039/c7cs00695k |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2056391129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2035245140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</originalsourceid><addsrcrecordid>eNpdkctL9DAUxYMoOo5u3H8ScCNiNY-2adzJ4AsFF-q6ZNIbrbZNTVof_71XR_3ARUi4-eWcHA4hW5wdcCb1oVU2Mpbr7GmJTHiasyRVabpMJkyyPGGMizWyHuMjnrjKxSpZE1qJvFBiQt5uH4Deg29hCO_UO9pDqH1VW_rU-SHu094379YM0JkOIjVdRV_BvNTdPXXBt9RQ-wBtbU3z-TL2YIf6BY5w3tTzYFDT-UADDLUdGxMWdESvDbLiTBNh83ufkrvTk9vZeXJ1fXYxO75KbMrkkBgrBGg9dwpXBlKyIjWWga5kkUmMU5hcOW4NsKLIwGnOgWmnRGUR1FJOye5Ctw_-eYQ4lOhvoWkwjx9jKZjMRJpxdJuSnT_oox9Dh79DKsslaguN1N6CssHHGMCVfahbTFpyVn72Uc7U7Oarj0uEt78lx3kL1S_6UwAC_xZAiPb39n-h8gMe9pB2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056391129</pqid></control><display><type>article</type><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</creator><creatorcontrib>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</creatorcontrib><description>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis.
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</description><identifier>ISSN: 0306-0012</identifier><identifier>EISSN: 1460-4744</identifier><identifier>DOI: 10.1039/c7cs00695k</identifier><identifier>PMID: 29726872</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Crystal structure ; Knots ; Organic chemistry</subject><ispartof>Chemical Society reviews, 2018-06, Vol.47 (12), p.4642-4664</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</citedby><cites>FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</cites><orcidid>0000-0002-6552-1363 ; 0000-0001-5614-1951 ; 0000-0002-5611-3325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29726872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>O'Keeffe, Michael</creatorcontrib><creatorcontrib>Treacy, Michael M. J</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><title>Chemical Society reviews</title><addtitle>Chem Soc Rev</addtitle><description>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis.
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</description><subject>Crystal structure</subject><subject>Knots</subject><subject>Organic chemistry</subject><issn>0306-0012</issn><issn>1460-4744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkctL9DAUxYMoOo5u3H8ScCNiNY-2adzJ4AsFF-q6ZNIbrbZNTVof_71XR_3ARUi4-eWcHA4hW5wdcCb1oVU2Mpbr7GmJTHiasyRVabpMJkyyPGGMizWyHuMjnrjKxSpZE1qJvFBiQt5uH4Deg29hCO_UO9pDqH1VW_rU-SHu094379YM0JkOIjVdRV_BvNTdPXXBt9RQ-wBtbU3z-TL2YIf6BY5w3tTzYFDT-UADDLUdGxMWdESvDbLiTBNh83ufkrvTk9vZeXJ1fXYxO75KbMrkkBgrBGg9dwpXBlKyIjWWga5kkUmMU5hcOW4NsKLIwGnOgWmnRGUR1FJOye5Ctw_-eYQ4lOhvoWkwjx9jKZjMRJpxdJuSnT_oox9Dh79DKsslaguN1N6CssHHGMCVfahbTFpyVn72Uc7U7Oarj0uEt78lx3kL1S_6UwAC_xZAiPb39n-h8gMe9pB2</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Liu, Yuzhong</creator><creator>O'Keeffe, Michael</creator><creator>Treacy, Michael M. J</creator><creator>Yaghi, Omar M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6552-1363</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid><orcidid>https://orcid.org/0000-0002-5611-3325</orcidid></search><sort><creationdate>20180618</creationdate><title>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</title><author>Liu, Yuzhong ; O'Keeffe, Michael ; Treacy, Michael M. J ; Yaghi, Omar M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ac22e99bf79bf5e33084ac0e9d38531768a67f1cae0885ef911e09f72dc84a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal structure</topic><topic>Knots</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuzhong</creatorcontrib><creatorcontrib>O'Keeffe, Michael</creatorcontrib><creatorcontrib>Treacy, Michael M. J</creatorcontrib><creatorcontrib>Yaghi, Omar M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical Society reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuzhong</au><au>O'Keeffe, Michael</au><au>Treacy, Michael M. J</au><au>Yaghi, Omar M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry</atitle><jtitle>Chemical Society reviews</jtitle><addtitle>Chem Soc Rev</addtitle><date>2018-06-18</date><risdate>2018</risdate><volume>47</volume><issue>12</issue><spage>4642</spage><epage>4664</epage><pages>4642-4664</pages><issn>0306-0012</issn><eissn>1460-4744</eissn><abstract>The geometry of simple knots and catenanes is described using the concept of linear line segments (sticks) joined at corners. This is extended to include woven linear threads as members of the extended family of knots. The concept of transitivity that can be used as a measure of regularity is explained. Then a review is given of the simplest, most regular 2- and 3-periodic patterns of polycatenanes and weavings. Occurrences in crystal structures are noted but most structures are believed to be new and ripe targets for designed synthesis.
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29726872</pmid><doi>10.1039/c7cs00695k</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6552-1363</orcidid><orcidid>https://orcid.org/0000-0001-5614-1951</orcidid><orcidid>https://orcid.org/0000-0002-5611-3325</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-0012 |
ispartof | Chemical Society reviews, 2018-06, Vol.47 (12), p.4642-4664 |
issn | 0306-0012 1460-4744 |
language | eng |
recordid | cdi_proquest_journals_2056391129 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Crystal structure Knots Organic chemistry |
title | The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20geometry%20of%20periodic%20knots,%20polycatenanes%20and%20weaving%20from%20a%20chemical%20perspective:%20a%20library%20for%20reticular%20chemistry&rft.jtitle=Chemical%20Society%20reviews&rft.au=Liu,%20Yuzhong&rft.date=2018-06-18&rft.volume=47&rft.issue=12&rft.spage=4642&rft.epage=4664&rft.pages=4642-4664&rft.issn=0306-0012&rft.eissn=1460-4744&rft_id=info:doi/10.1039/c7cs00695k&rft_dat=%3Cproquest_rsc_p%3E2035245140%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056391129&rft_id=info:pmid/29726872&rfr_iscdi=true |