Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe

A new discharge computational model is proposed on the basis of the integration of the velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full. The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate under fre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2018-05, Vol.10 (5), p.638
Hauptverfasser: Calomino, Francesco, Alfonsi, Giancarlo, Gaudio, Roberto, D’Ippolito, Antonino, Lauria, Agostino, Tafarojnoruz, Ali, Artese, Serena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 638
container_title Water (Basel)
container_volume 10
creator Calomino, Francesco
Alfonsi, Giancarlo
Gaudio, Roberto
D’Ippolito, Antonino
Lauria, Agostino
Tafarojnoruz, Ali
Artese, Serena
description A new discharge computational model is proposed on the basis of the integration of the velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full. The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate under free-surface flow conditions. The model was evaluated through new laboratory experiments as well as a literature datasets. The results show that flow depth and pipe slope may affect the model accuracy; nevertheless, a prediction error smaller than 20% is expected from the model. Experimental results reveal the influence of the pipe slope and flow depth on the friction factor and the stage-discharge curves: the friction factor may increase with pipe slope, while it reduces as flow depth increases. Hence, a notable change of pipe slope may lead to the variation of the stage-discharge curve. A part of this study deals with numerical simulation of the velocity profiles and the stage-discharge curves. Using the Reynolds-Averaged Navier-Stokes (RANS) equations, numerical solutions were obtained to simulate four experimental tests, obtaining enough accurate results as to velocity profiles and water depths. The results of the simulated flow velocity were used to estimate the flow discharge, confirming the potential of numerical techniques for the prediction of stage-discharge curves.
doi_str_mv 10.3390/w10050638
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2056378344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A790328505</galeid><sourcerecordid>A790328505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f9d7cf0d27fec12a38a0b9c7c449918289009acfaf2027620bb3d197ca9041663</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGoP_oOAJw9bJx-7SY6ltFYsKlTPIc0mZct2s2Z3qf33RirizGFmXuadgQehWwJTxhQ8HAlADgWTF2hEQbCMc04u__XXaNJ1e0jBlZQ5jNDz4qt1sTq4pjc1Nk2JX4ZDEmyaNv1QnnDweBmdyzZD9MY6vKzDscNVgw2ehxiHneldid-q1t2gK2_qzk1-6xh9LBfv81W2fn18ms_WmWWM9JlXpbAeSiq8s4QaJg1slRWWc6WIpFIBKGO98RSoKChst6wkSlijgJOiYGN0d77bxvA5uK7X-zDEJr3UFPKCCck4T1vT89bO1E5XjQ99NDZl6Q6VDY3zVdJnQgGjCUWeDPdng42h66Lzuk1gTDxpAvqHr_7jy74BLD5qcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056378344</pqid></control><display><type>article</type><title>Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Calomino, Francesco ; Alfonsi, Giancarlo ; Gaudio, Roberto ; D’Ippolito, Antonino ; Lauria, Agostino ; Tafarojnoruz, Ali ; Artese, Serena</creator><creatorcontrib>Calomino, Francesco ; Alfonsi, Giancarlo ; Gaudio, Roberto ; D’Ippolito, Antonino ; Lauria, Agostino ; Tafarojnoruz, Ali ; Artese, Serena</creatorcontrib><description>A new discharge computational model is proposed on the basis of the integration of the velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full. The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate under free-surface flow conditions. The model was evaluated through new laboratory experiments as well as a literature datasets. The results show that flow depth and pipe slope may affect the model accuracy; nevertheless, a prediction error smaller than 20% is expected from the model. Experimental results reveal the influence of the pipe slope and flow depth on the friction factor and the stage-discharge curves: the friction factor may increase with pipe slope, while it reduces as flow depth increases. Hence, a notable change of pipe slope may lead to the variation of the stage-discharge curve. A part of this study deals with numerical simulation of the velocity profiles and the stage-discharge curves. Using the Reynolds-Averaged Navier-Stokes (RANS) equations, numerical solutions were obtained to simulate four experimental tests, obtaining enough accurate results as to velocity profiles and water depths. The results of the simulated flow velocity were used to estimate the flow discharge, confirming the potential of numerical techniques for the prediction of stage-discharge curves.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w10050638</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Flow rates ; Flow velocity ; Friction ; Friction factor ; Mathematical models ; Model accuracy ; Numerical analysis ; Pipes ; Reynolds averaged Navier-Stokes method ; Simulation ; Simulation methods ; Surface flow ; Velocity distribution</subject><ispartof>Water (Basel), 2018-05, Vol.10 (5), p.638</ispartof><rights>COPYRIGHT 2018 MDPI AG</rights><rights>Copyright MDPI AG 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f9d7cf0d27fec12a38a0b9c7c449918289009acfaf2027620bb3d197ca9041663</citedby><cites>FETCH-LOGICAL-c331t-f9d7cf0d27fec12a38a0b9c7c449918289009acfaf2027620bb3d197ca9041663</cites><orcidid>0000-0002-2515-8934 ; 0000-0003-3265-2196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Calomino, Francesco</creatorcontrib><creatorcontrib>Alfonsi, Giancarlo</creatorcontrib><creatorcontrib>Gaudio, Roberto</creatorcontrib><creatorcontrib>D’Ippolito, Antonino</creatorcontrib><creatorcontrib>Lauria, Agostino</creatorcontrib><creatorcontrib>Tafarojnoruz, Ali</creatorcontrib><creatorcontrib>Artese, Serena</creatorcontrib><title>Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe</title><title>Water (Basel)</title><description>A new discharge computational model is proposed on the basis of the integration of the velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full. The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate under free-surface flow conditions. The model was evaluated through new laboratory experiments as well as a literature datasets. The results show that flow depth and pipe slope may affect the model accuracy; nevertheless, a prediction error smaller than 20% is expected from the model. Experimental results reveal the influence of the pipe slope and flow depth on the friction factor and the stage-discharge curves: the friction factor may increase with pipe slope, while it reduces as flow depth increases. Hence, a notable change of pipe slope may lead to the variation of the stage-discharge curve. A part of this study deals with numerical simulation of the velocity profiles and the stage-discharge curves. Using the Reynolds-Averaged Navier-Stokes (RANS) equations, numerical solutions were obtained to simulate four experimental tests, obtaining enough accurate results as to velocity profiles and water depths. The results of the simulated flow velocity were used to estimate the flow discharge, confirming the potential of numerical techniques for the prediction of stage-discharge curves.</description><subject>Analysis</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Friction</subject><subject>Friction factor</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Numerical analysis</subject><subject>Pipes</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Surface flow</subject><subject>Velocity distribution</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE1LAzEQhoMoWGoP_oOAJw9bJx-7SY6ltFYsKlTPIc0mZct2s2Z3qf33RirizGFmXuadgQehWwJTxhQ8HAlADgWTF2hEQbCMc04u__XXaNJ1e0jBlZQ5jNDz4qt1sTq4pjc1Nk2JX4ZDEmyaNv1QnnDweBmdyzZD9MY6vKzDscNVgw2ehxiHneldid-q1t2gK2_qzk1-6xh9LBfv81W2fn18ms_WmWWM9JlXpbAeSiq8s4QaJg1slRWWc6WIpFIBKGO98RSoKChst6wkSlijgJOiYGN0d77bxvA5uK7X-zDEJr3UFPKCCck4T1vT89bO1E5XjQ99NDZl6Q6VDY3zVdJnQgGjCUWeDPdng42h66Lzuk1gTDxpAvqHr_7jy74BLD5qcg</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Calomino, Francesco</creator><creator>Alfonsi, Giancarlo</creator><creator>Gaudio, Roberto</creator><creator>D’Ippolito, Antonino</creator><creator>Lauria, Agostino</creator><creator>Tafarojnoruz, Ali</creator><creator>Artese, Serena</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2515-8934</orcidid><orcidid>https://orcid.org/0000-0003-3265-2196</orcidid></search><sort><creationdate>20180515</creationdate><title>Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe</title><author>Calomino, Francesco ; Alfonsi, Giancarlo ; Gaudio, Roberto ; D’Ippolito, Antonino ; Lauria, Agostino ; Tafarojnoruz, Ali ; Artese, Serena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f9d7cf0d27fec12a38a0b9c7c449918289009acfaf2027620bb3d197ca9041663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Friction</topic><topic>Friction factor</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Numerical analysis</topic><topic>Pipes</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Surface flow</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calomino, Francesco</creatorcontrib><creatorcontrib>Alfonsi, Giancarlo</creatorcontrib><creatorcontrib>Gaudio, Roberto</creatorcontrib><creatorcontrib>D’Ippolito, Antonino</creatorcontrib><creatorcontrib>Lauria, Agostino</creatorcontrib><creatorcontrib>Tafarojnoruz, Ali</creatorcontrib><creatorcontrib>Artese, Serena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calomino, Francesco</au><au>Alfonsi, Giancarlo</au><au>Gaudio, Roberto</au><au>D’Ippolito, Antonino</au><au>Lauria, Agostino</au><au>Tafarojnoruz, Ali</au><au>Artese, Serena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe</atitle><jtitle>Water (Basel)</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>10</volume><issue>5</issue><spage>638</spage><pages>638-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>A new discharge computational model is proposed on the basis of the integration of the velocity profile across the flow cross-section in an internally corrugated pipe flowing partially full. The model takes into account the velocity profiles in the pressurised pipe to predict the flow rate under free-surface flow conditions. The model was evaluated through new laboratory experiments as well as a literature datasets. The results show that flow depth and pipe slope may affect the model accuracy; nevertheless, a prediction error smaller than 20% is expected from the model. Experimental results reveal the influence of the pipe slope and flow depth on the friction factor and the stage-discharge curves: the friction factor may increase with pipe slope, while it reduces as flow depth increases. Hence, a notable change of pipe slope may lead to the variation of the stage-discharge curve. A part of this study deals with numerical simulation of the velocity profiles and the stage-discharge curves. Using the Reynolds-Averaged Navier-Stokes (RANS) equations, numerical solutions were obtained to simulate four experimental tests, obtaining enough accurate results as to velocity profiles and water depths. The results of the simulated flow velocity were used to estimate the flow discharge, confirming the potential of numerical techniques for the prediction of stage-discharge curves.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w10050638</doi><orcidid>https://orcid.org/0000-0002-2515-8934</orcidid><orcidid>https://orcid.org/0000-0003-3265-2196</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2018-05, Vol.10 (5), p.638
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_2056378344
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Computational fluid dynamics
Computer applications
Computer simulation
Flow rates
Flow velocity
Friction
Friction factor
Mathematical models
Model accuracy
Numerical analysis
Pipes
Reynolds averaged Navier-Stokes method
Simulation
Simulation methods
Surface flow
Velocity distribution
title Experimental and Numerical Study of Free-Surface Flows in a Corrugated Pipe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Study%20of%20Free-Surface%20Flows%20in%20a%20Corrugated%20Pipe&rft.jtitle=Water%20(Basel)&rft.au=Calomino,%20Francesco&rft.date=2018-05-15&rft.volume=10&rft.issue=5&rft.spage=638&rft.pages=638-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w10050638&rft_dat=%3Cgale_proqu%3EA790328505%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056378344&rft_id=info:pmid/&rft_galeid=A790328505&rfr_iscdi=true