Nonlinear discontinuous Petrov–Galerkin methods

The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2018-07, Vol.139 (3), p.529-561
Hauptverfasser: Carstensen, C., Bringmann, P., Hellwig, F., Wriggers, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 3
container_start_page 529
container_title Numerische Mathematik
container_volume 139
creator Carstensen, C.
Bringmann, P.
Hellwig, F.
Wriggers, P.
description The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.
doi_str_mv 10.1007/s00211-018-0947-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055961397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055961397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4K7gOnpvMplpllK0FYq6UHAXJpNEp7ZJTWYEd76Db-iTmDKCK1f3cDk_8BFyinCOANVFAmCIFHBKQRYVFXtklIWgnBViP2tgkgopnw7JUUorAKzKAkcEb4Nft97WcWLa1ATftb4PfZrc2y6G9-_Pr3m9tvG19ZON7V6CScfkwNXrZE9-75g8Xl89zBZ0eTe_mV0uacOx7CiXtdG6kVwLA-h4CVowrp0oQBtp88sZUTpmrMSSI0hb2Uo4rospWMsLPiZnQ-82hrfepk6tQh99nlQMhJAlclllFw6uJoaUonVqG9tNHT8UgtqRUQMZlcmoHRklcoYNmZS9_tnGv-b_Qz-Dq2bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055961397</pqid></control><display><type>article</type><title>Nonlinear discontinuous Petrov–Galerkin methods</title><source>SpringerNature Journals</source><creator>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</creator><creatorcontrib>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</creatorcontrib><description>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-018-0947-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Galerkin method ; Least squares method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Test procedures ; Theoretical</subject><ispartof>Numerische Mathematik, 2018-07, Vol.139 (3), p.529-561</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</citedby><cites>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-018-0947-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-018-0947-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carstensen, C.</creatorcontrib><creatorcontrib>Bringmann, P.</creatorcontrib><creatorcontrib>Hellwig, F.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>Nonlinear discontinuous Petrov–Galerkin methods</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</description><subject>Galerkin method</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Test procedures</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4K7gOnpvMplpllK0FYq6UHAXJpNEp7ZJTWYEd76Db-iTmDKCK1f3cDk_8BFyinCOANVFAmCIFHBKQRYVFXtklIWgnBViP2tgkgopnw7JUUorAKzKAkcEb4Nft97WcWLa1ATftb4PfZrc2y6G9-_Pr3m9tvG19ZON7V6CScfkwNXrZE9-75g8Xl89zBZ0eTe_mV0uacOx7CiXtdG6kVwLA-h4CVowrp0oQBtp88sZUTpmrMSSI0hb2Uo4rospWMsLPiZnQ-82hrfepk6tQh99nlQMhJAlclllFw6uJoaUonVqG9tNHT8UgtqRUQMZlcmoHRklcoYNmZS9_tnGv-b_Qz-Dq2bi</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Carstensen, C.</creator><creator>Bringmann, P.</creator><creator>Hellwig, F.</creator><creator>Wriggers, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Nonlinear discontinuous Petrov–Galerkin methods</title><author>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Galerkin method</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Test procedures</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carstensen, C.</creatorcontrib><creatorcontrib>Bringmann, P.</creatorcontrib><creatorcontrib>Hellwig, F.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carstensen, C.</au><au>Bringmann, P.</au><au>Hellwig, F.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear discontinuous Petrov–Galerkin methods</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>139</volume><issue>3</issue><spage>529</spage><epage>561</epage><pages>529-561</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-018-0947-5</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2018-07, Vol.139 (3), p.529-561
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2055961397
source SpringerNature Journals
subjects Galerkin method
Least squares method
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Test procedures
Theoretical
title Nonlinear discontinuous Petrov–Galerkin methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20discontinuous%20Petrov%E2%80%93Galerkin%20methods&rft.jtitle=Numerische%20Mathematik&rft.au=Carstensen,%20C.&rft.date=2018-07-01&rft.volume=139&rft.issue=3&rft.spage=529&rft.epage=561&rft.pages=529-561&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-018-0947-5&rft_dat=%3Cproquest_cross%3E2055961397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055961397&rft_id=info:pmid/&rfr_iscdi=true