Nonlinear discontinuous Petrov–Galerkin methods
The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a redu...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2018-07, Vol.139 (3), p.529-561 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 561 |
---|---|
container_issue | 3 |
container_start_page | 529 |
container_title | Numerische Mathematik |
container_volume | 139 |
creator | Carstensen, C. Bringmann, P. Hellwig, F. Wriggers, P. |
description | The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples. |
doi_str_mv | 10.1007/s00211-018-0947-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055961397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055961397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4K7gOnpvMplpllK0FYq6UHAXJpNEp7ZJTWYEd76Db-iTmDKCK1f3cDk_8BFyinCOANVFAmCIFHBKQRYVFXtklIWgnBViP2tgkgopnw7JUUorAKzKAkcEb4Nft97WcWLa1ATftb4PfZrc2y6G9-_Pr3m9tvG19ZON7V6CScfkwNXrZE9-75g8Xl89zBZ0eTe_mV0uacOx7CiXtdG6kVwLA-h4CVowrp0oQBtp88sZUTpmrMSSI0hb2Uo4rospWMsLPiZnQ-82hrfepk6tQh99nlQMhJAlclllFw6uJoaUonVqG9tNHT8UgtqRUQMZlcmoHRklcoYNmZS9_tnGv-b_Qz-Dq2bi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055961397</pqid></control><display><type>article</type><title>Nonlinear discontinuous Petrov–Galerkin methods</title><source>SpringerNature Journals</source><creator>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</creator><creatorcontrib>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</creatorcontrib><description>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-018-0947-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Galerkin method ; Least squares method ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Test procedures ; Theoretical</subject><ispartof>Numerische Mathematik, 2018-07, Vol.139 (3), p.529-561</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</citedby><cites>FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-018-0947-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-018-0947-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Carstensen, C.</creatorcontrib><creatorcontrib>Bringmann, P.</creatorcontrib><creatorcontrib>Hellwig, F.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>Nonlinear discontinuous Petrov–Galerkin methods</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</description><subject>Galerkin method</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Test procedures</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKsP4K7gOnpvMplpllK0FYq6UHAXJpNEp7ZJTWYEd76Db-iTmDKCK1f3cDk_8BFyinCOANVFAmCIFHBKQRYVFXtklIWgnBViP2tgkgopnw7JUUorAKzKAkcEb4Nft97WcWLa1ATftb4PfZrc2y6G9-_Pr3m9tvG19ZON7V6CScfkwNXrZE9-75g8Xl89zBZ0eTe_mV0uacOx7CiXtdG6kVwLA-h4CVowrp0oQBtp88sZUTpmrMSSI0hb2Uo4rospWMsLPiZnQ-82hrfepk6tQh99nlQMhJAlclllFw6uJoaUonVqG9tNHT8UgtqRUQMZlcmoHRklcoYNmZS9_tnGv-b_Qz-Dq2bi</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Carstensen, C.</creator><creator>Bringmann, P.</creator><creator>Hellwig, F.</creator><creator>Wriggers, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Nonlinear discontinuous Petrov–Galerkin methods</title><author>Carstensen, C. ; Bringmann, P. ; Hellwig, F. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-39adbbc93b5d01f360b523bf540bd9e01ffd56f2de9163109e7e75f3b480ee343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Galerkin method</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Test procedures</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carstensen, C.</creatorcontrib><creatorcontrib>Bringmann, P.</creatorcontrib><creatorcontrib>Hellwig, F.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carstensen, C.</au><au>Bringmann, P.</au><au>Hellwig, F.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear discontinuous Petrov–Galerkin methods</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>139</volume><issue>3</issue><spage>529</spage><epage>561</epage><pages>529-561</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-018-0947-5</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2018-07, Vol.139 (3), p.529-561 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2055961397 |
source | SpringerNature Journals |
subjects | Galerkin method Least squares method Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Test procedures Theoretical |
title | Nonlinear discontinuous Petrov–Galerkin methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20discontinuous%20Petrov%E2%80%93Galerkin%20methods&rft.jtitle=Numerische%20Mathematik&rft.au=Carstensen,%20C.&rft.date=2018-07-01&rft.volume=139&rft.issue=3&rft.spage=529&rft.epage=561&rft.pages=529-561&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-018-0947-5&rft_dat=%3Cproquest_cross%3E2055961397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055961397&rft_id=info:pmid/&rfr_iscdi=true |