Nonlinear discontinuous Petrov–Galerkin methods

The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a redu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2018-07, Vol.139 (3), p.529-561
Hauptverfasser: Carstensen, C., Bringmann, P., Hellwig, F., Wriggers, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-018-0947-5