Nonlinear discontinuous Petrov–Galerkin methods
The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a redu...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2018-07, Vol.139 (3), p.529-561 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discontinuous Petrov–Galerkin method is a minimal residual method with broken test spaces and is introduced for a nonlinear model problem in this paper. Its lowest-order version applies to a nonlinear uniformly convex model example and is equivalently characterized as a mixed formulation, a reduced formulation, and a weighted nonlinear least-squares method. Quasi-optimal a priori and reliable and efficient a posteriori estimates are obtained for the abstract nonlinear dPG framework for the approximation of a regular solution. The variational model example allows for a built-in guaranteed error control despite inexact solve. The subtle uniqueness of discrete minimizers is monitored in numerical examples. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-018-0947-5 |