VALES

We use new Band 3 CO(1–0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.03 < z < 0.2 present in the Valparaíso ALMA Line Emission Survey (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-06, Vol.602
Hauptverfasser: Hughes, T. M., Ibar, E., Villanueva, V., Aravena, M., Baes, M., Bourne, N., Cooray, A., Dunne, L., Dye, S., Eales, S., Furlanetto, C., Herrera-Camus, R., Ivison, R. J., van Kampen, E., Lara-López, M. A., Maddox, S. J., Michałowski, M. J., Smith, M. W. L., Valiante, E., van der Werf, P., Xue, Y. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 602
creator Hughes, T. M.
Ibar, E.
Villanueva, V.
Aravena, M.
Baes, M.
Bourne, N.
Cooray, A.
Dunne, L.
Dye, S.
Eales, S.
Furlanetto, C.
Herrera-Camus, R.
Ivison, R. J.
van Kampen, E.
Lara-López, M. A.
Maddox, S. J.
Michałowski, M. J.
Smith, M. W. L.
Valiante, E.
van der Werf, P.
Xue, Y. Q.
description We use new Band 3 CO(1–0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.03 < z < 0.2 present in the Valparaíso ALMA Line Emission Survey (VALES). The sample is drawn from far-IR bright galaxies over ~160 deg2 in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), which is covered by high-quality ancillary data including Herschel [Cii] 158 μm spectroscopy and far-infrared (FIR) photometry. The [Cii] and CO(1–0) lines are both detected at >5σ in 26 sources. We find an average [Cii] to CO(1–0) luminosity ratio of 3500 ± 1200 for our sample that is consistent with previous studies. Using the [Cii], CO(1–0) and FIR measurements as diagnostics of the physical conditions of the interstellar medium, we compare these observations to the predictions of a photodissociation region (PDR) model to determine the gas density, surface temperature, pressure, and the strength of the incident far-ultraviolet (FUV) radiation field, G0, normalised to the Habing Field. The majority of our sample exhibit hydrogen densities of 4 < log n/ cm3 < 5.5 and experience an incident FUV radiation field with strengths of 2 < log G0 < 3 when adopting standard adjustments. A comparison to galaxy samples at different redshifts indicates that the average strength of the FUV radiation field appears constant up to redshift z ~ 6.4, yet the neutral gas density increases as a function of redshift by a factor of ~100 from z = 0 to z = 0.2 that persists regardless of various adjustments to our observable quantities. Whilst this evolution could provide an explanation for the observed evolution of the star formation rate density with cosmic time, the result most likely arises from a combination of observational biases when using different suites of emission lines as diagnostic tracers of PDR gas.
doi_str_mv 10.1051/0004-6361/201629588
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_journals_2055803348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055803348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1618-3c444df8c0d2f5c8ee6fe2516702e39a8d4a956b32db41ae4d9dad6936bcbf983</originalsourceid><addsrcrecordid>eNo9zUtLAzEUBeAgFhyrv8Cl69h7c5M7ybIM9QEDilN1GTKTDLQ-WjMttP_eSsXV4cDHOUJcIdwgGJwAgJZMjBMFyMoZa09EgZqUhFLzqSj-xZk4H4bloSq0VIjR67SeNRdi1IePIV3-5Vi83M7m1b2sH-8eqmktO2S0kjqtdextB1H1prMpcZ-UQS5BJXLBRh2c4ZZUbDWGpKOLIbIjbru2d5bG4vq4u86r720aNn652uavw6VXYIwFIv2r5FEthk3a-XVefIa89yG_ey6pNN7Cm59X7um54cZX9ANiA0RH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055803348</pqid></control><display><type>article</type><title>VALES</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hughes, T. M. ; Ibar, E. ; Villanueva, V. ; Aravena, M. ; Baes, M. ; Bourne, N. ; Cooray, A. ; Dunne, L. ; Dye, S. ; Eales, S. ; Furlanetto, C. ; Herrera-Camus, R. ; Ivison, R. J. ; van Kampen, E. ; Lara-López, M. A. ; Maddox, S. J. ; Michałowski, M. J. ; Smith, M. W. L. ; Valiante, E. ; van der Werf, P. ; Xue, Y. Q.</creator><creatorcontrib>Hughes, T. M. ; Ibar, E. ; Villanueva, V. ; Aravena, M. ; Baes, M. ; Bourne, N. ; Cooray, A. ; Dunne, L. ; Dye, S. ; Eales, S. ; Furlanetto, C. ; Herrera-Camus, R. ; Ivison, R. J. ; van Kampen, E. ; Lara-López, M. A. ; Maddox, S. J. ; Michałowski, M. J. ; Smith, M. W. L. ; Valiante, E. ; van der Werf, P. ; Xue, Y. Q.</creatorcontrib><description><![CDATA[We use new Band 3 CO(1–0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.03 < z < 0.2 present in the Valparaíso ALMA Line Emission Survey (VALES). The sample is drawn from far-IR bright galaxies over ~160 deg2 in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), which is covered by high-quality ancillary data including Herschel [Cii] 158 μm spectroscopy and far-infrared (FIR) photometry. The [Cii] and CO(1–0) lines are both detected at >5σ in 26 sources. We find an average [Cii] to CO(1–0) luminosity ratio of 3500 ± 1200 for our sample that is consistent with previous studies. Using the [Cii], CO(1–0) and FIR measurements as diagnostics of the physical conditions of the interstellar medium, we compare these observations to the predictions of a photodissociation region (PDR) model to determine the gas density, surface temperature, pressure, and the strength of the incident far-ultraviolet (FUV) radiation field, G0, normalised to the Habing Field. The majority of our sample exhibit hydrogen densities of 4 < log n/ cm3 < 5.5 and experience an incident FUV radiation field with strengths of 2 < log G0 < 3 when adopting standard adjustments. A comparison to galaxy samples at different redshifts indicates that the average strength of the FUV radiation field appears constant up to redshift z ~ 6.4, yet the neutral gas density increases as a function of redshift by a factor of ~100 from z = 0 to z = 0.2 that persists regardless of various adjustments to our observable quantities. Whilst this evolution could provide an explanation for the observed evolution of the star formation rate density with cosmic time, the result most likely arises from a combination of observational biases when using different suites of emission lines as diagnostic tracers of PDR gas.]]></description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/201629588</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Density ; Diagnostic systems ; Far infrared radiation ; Galaxies ; galaxies: high-redshift ; galaxies: ISM ; Gas density ; Infrared photometry ; infrared: galaxies ; Interstellar gas ; Interstellar matter ; ISM: lines and bands ; Luminosity ; Neutral gas density ; Neutral gases ; Photodissociation ; Photometry ; Radio telescopes ; Red shift ; Space telescopes ; Star &amp; galaxy formation ; Star formation rate ; Stellar evolution ; submillimeter: galaxies ; Tracers</subject><ispartof>Astronomy and astrophysics (Berlin), 2017-06, Vol.602</ispartof><rights>Copyright EDP Sciences Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1618-3c444df8c0d2f5c8ee6fe2516702e39a8d4a956b32db41ae4d9dad6936bcbf983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hughes, T. M.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Villanueva, V.</creatorcontrib><creatorcontrib>Aravena, M.</creatorcontrib><creatorcontrib>Baes, M.</creatorcontrib><creatorcontrib>Bourne, N.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Dunne, L.</creatorcontrib><creatorcontrib>Dye, S.</creatorcontrib><creatorcontrib>Eales, S.</creatorcontrib><creatorcontrib>Furlanetto, C.</creatorcontrib><creatorcontrib>Herrera-Camus, R.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Lara-López, M. A.</creatorcontrib><creatorcontrib>Maddox, S. J.</creatorcontrib><creatorcontrib>Michałowski, M. J.</creatorcontrib><creatorcontrib>Smith, M. W. L.</creatorcontrib><creatorcontrib>Valiante, E.</creatorcontrib><creatorcontrib>van der Werf, P.</creatorcontrib><creatorcontrib>Xue, Y. Q.</creatorcontrib><title>VALES</title><title>Astronomy and astrophysics (Berlin)</title><description><![CDATA[We use new Band 3 CO(1–0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.03 < z < 0.2 present in the Valparaíso ALMA Line Emission Survey (VALES). The sample is drawn from far-IR bright galaxies over ~160 deg2 in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), which is covered by high-quality ancillary data including Herschel [Cii] 158 μm spectroscopy and far-infrared (FIR) photometry. The [Cii] and CO(1–0) lines are both detected at >5σ in 26 sources. We find an average [Cii] to CO(1–0) luminosity ratio of 3500 ± 1200 for our sample that is consistent with previous studies. Using the [Cii], CO(1–0) and FIR measurements as diagnostics of the physical conditions of the interstellar medium, we compare these observations to the predictions of a photodissociation region (PDR) model to determine the gas density, surface temperature, pressure, and the strength of the incident far-ultraviolet (FUV) radiation field, G0, normalised to the Habing Field. The majority of our sample exhibit hydrogen densities of 4 < log n/ cm3 < 5.5 and experience an incident FUV radiation field with strengths of 2 < log G0 < 3 when adopting standard adjustments. A comparison to galaxy samples at different redshifts indicates that the average strength of the FUV radiation field appears constant up to redshift z ~ 6.4, yet the neutral gas density increases as a function of redshift by a factor of ~100 from z = 0 to z = 0.2 that persists regardless of various adjustments to our observable quantities. Whilst this evolution could provide an explanation for the observed evolution of the star formation rate density with cosmic time, the result most likely arises from a combination of observational biases when using different suites of emission lines as diagnostic tracers of PDR gas.]]></description><subject>Density</subject><subject>Diagnostic systems</subject><subject>Far infrared radiation</subject><subject>Galaxies</subject><subject>galaxies: high-redshift</subject><subject>galaxies: ISM</subject><subject>Gas density</subject><subject>Infrared photometry</subject><subject>infrared: galaxies</subject><subject>Interstellar gas</subject><subject>Interstellar matter</subject><subject>ISM: lines and bands</subject><subject>Luminosity</subject><subject>Neutral gas density</subject><subject>Neutral gases</subject><subject>Photodissociation</subject><subject>Photometry</subject><subject>Radio telescopes</subject><subject>Red shift</subject><subject>Space telescopes</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation rate</subject><subject>Stellar evolution</subject><subject>submillimeter: galaxies</subject><subject>Tracers</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9zUtLAzEUBeAgFhyrv8Cl69h7c5M7ybIM9QEDilN1GTKTDLQ-WjMttP_eSsXV4cDHOUJcIdwgGJwAgJZMjBMFyMoZa09EgZqUhFLzqSj-xZk4H4bloSq0VIjR67SeNRdi1IePIV3-5Vi83M7m1b2sH-8eqmktO2S0kjqtdextB1H1prMpcZ-UQS5BJXLBRh2c4ZZUbDWGpKOLIbIjbru2d5bG4vq4u86r720aNn652uavw6VXYIwFIv2r5FEthk3a-XVefIa89yG_ey6pNN7Cm59X7um54cZX9ANiA0RH</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hughes, T. M.</creator><creator>Ibar, E.</creator><creator>Villanueva, V.</creator><creator>Aravena, M.</creator><creator>Baes, M.</creator><creator>Bourne, N.</creator><creator>Cooray, A.</creator><creator>Dunne, L.</creator><creator>Dye, S.</creator><creator>Eales, S.</creator><creator>Furlanetto, C.</creator><creator>Herrera-Camus, R.</creator><creator>Ivison, R. J.</creator><creator>van Kampen, E.</creator><creator>Lara-López, M. A.</creator><creator>Maddox, S. J.</creator><creator>Michałowski, M. J.</creator><creator>Smith, M. W. L.</creator><creator>Valiante, E.</creator><creator>van der Werf, P.</creator><creator>Xue, Y. Q.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170601</creationdate><title>VALES</title><author>Hughes, T. M. ; Ibar, E. ; Villanueva, V. ; Aravena, M. ; Baes, M. ; Bourne, N. ; Cooray, A. ; Dunne, L. ; Dye, S. ; Eales, S. ; Furlanetto, C. ; Herrera-Camus, R. ; Ivison, R. J. ; van Kampen, E. ; Lara-López, M. A. ; Maddox, S. J. ; Michałowski, M. J. ; Smith, M. W. L. ; Valiante, E. ; van der Werf, P. ; Xue, Y. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1618-3c444df8c0d2f5c8ee6fe2516702e39a8d4a956b32db41ae4d9dad6936bcbf983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Density</topic><topic>Diagnostic systems</topic><topic>Far infrared radiation</topic><topic>Galaxies</topic><topic>galaxies: high-redshift</topic><topic>galaxies: ISM</topic><topic>Gas density</topic><topic>Infrared photometry</topic><topic>infrared: galaxies</topic><topic>Interstellar gas</topic><topic>Interstellar matter</topic><topic>ISM: lines and bands</topic><topic>Luminosity</topic><topic>Neutral gas density</topic><topic>Neutral gases</topic><topic>Photodissociation</topic><topic>Photometry</topic><topic>Radio telescopes</topic><topic>Red shift</topic><topic>Space telescopes</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation rate</topic><topic>Stellar evolution</topic><topic>submillimeter: galaxies</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hughes, T. M.</creatorcontrib><creatorcontrib>Ibar, E.</creatorcontrib><creatorcontrib>Villanueva, V.</creatorcontrib><creatorcontrib>Aravena, M.</creatorcontrib><creatorcontrib>Baes, M.</creatorcontrib><creatorcontrib>Bourne, N.</creatorcontrib><creatorcontrib>Cooray, A.</creatorcontrib><creatorcontrib>Dunne, L.</creatorcontrib><creatorcontrib>Dye, S.</creatorcontrib><creatorcontrib>Eales, S.</creatorcontrib><creatorcontrib>Furlanetto, C.</creatorcontrib><creatorcontrib>Herrera-Camus, R.</creatorcontrib><creatorcontrib>Ivison, R. J.</creatorcontrib><creatorcontrib>van Kampen, E.</creatorcontrib><creatorcontrib>Lara-López, M. A.</creatorcontrib><creatorcontrib>Maddox, S. J.</creatorcontrib><creatorcontrib>Michałowski, M. J.</creatorcontrib><creatorcontrib>Smith, M. W. L.</creatorcontrib><creatorcontrib>Valiante, E.</creatorcontrib><creatorcontrib>van der Werf, P.</creatorcontrib><creatorcontrib>Xue, Y. Q.</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hughes, T. M.</au><au>Ibar, E.</au><au>Villanueva, V.</au><au>Aravena, M.</au><au>Baes, M.</au><au>Bourne, N.</au><au>Cooray, A.</au><au>Dunne, L.</au><au>Dye, S.</au><au>Eales, S.</au><au>Furlanetto, C.</au><au>Herrera-Camus, R.</au><au>Ivison, R. J.</au><au>van Kampen, E.</au><au>Lara-López, M. A.</au><au>Maddox, S. J.</au><au>Michałowski, M. J.</au><au>Smith, M. W. L.</au><au>Valiante, E.</au><au>van der Werf, P.</au><au>Xue, Y. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VALES</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>602</volume><issn>0004-6361</issn><eissn>1432-0746</eissn><abstract><![CDATA[We use new Band 3 CO(1–0) observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the physical conditions in the interstellar gas of a sample of 27 dusty main-sequence star-forming galaxies at 0.03 < z < 0.2 present in the Valparaíso ALMA Line Emission Survey (VALES). The sample is drawn from far-IR bright galaxies over ~160 deg2 in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), which is covered by high-quality ancillary data including Herschel [Cii] 158 μm spectroscopy and far-infrared (FIR) photometry. The [Cii] and CO(1–0) lines are both detected at >5σ in 26 sources. We find an average [Cii] to CO(1–0) luminosity ratio of 3500 ± 1200 for our sample that is consistent with previous studies. Using the [Cii], CO(1–0) and FIR measurements as diagnostics of the physical conditions of the interstellar medium, we compare these observations to the predictions of a photodissociation region (PDR) model to determine the gas density, surface temperature, pressure, and the strength of the incident far-ultraviolet (FUV) radiation field, G0, normalised to the Habing Field. The majority of our sample exhibit hydrogen densities of 4 < log n/ cm3 < 5.5 and experience an incident FUV radiation field with strengths of 2 < log G0 < 3 when adopting standard adjustments. A comparison to galaxy samples at different redshifts indicates that the average strength of the FUV radiation field appears constant up to redshift z ~ 6.4, yet the neutral gas density increases as a function of redshift by a factor of ~100 from z = 0 to z = 0.2 that persists regardless of various adjustments to our observable quantities. Whilst this evolution could provide an explanation for the observed evolution of the star formation rate density with cosmic time, the result most likely arises from a combination of observational biases when using different suites of emission lines as diagnostic tracers of PDR gas.]]></abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201629588</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2017-06, Vol.602
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_journals_2055803348
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Density
Diagnostic systems
Far infrared radiation
Galaxies
galaxies: high-redshift
galaxies: ISM
Gas density
Infrared photometry
infrared: galaxies
Interstellar gas
Interstellar matter
ISM: lines and bands
Luminosity
Neutral gas density
Neutral gases
Photodissociation
Photometry
Radio telescopes
Red shift
Space telescopes
Star & galaxy formation
Star formation rate
Stellar evolution
submillimeter: galaxies
Tracers
title VALES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VALES&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Hughes,%20T.%20M.&rft.date=2017-06-01&rft.volume=602&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201629588&rft_dat=%3Cproquest_istex%3E2055803348%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055803348&rft_id=info:pmid/&rfr_iscdi=true