Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse

On 21 August 2017, a total solar eclipse traversed the continental United States and caused large‐scale changes in ionospheric densities. These were detected as changes in medium‐ and high‐frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2018-05, Vol.45 (10), p.4665-4674
Hauptverfasser: Frissell, N. A., Katz, J. D., Gunning, S. W., Vega, J. S., Gerrard, A. J., Earle, G. D., Moses, M. L., West, M. L., Huba, J. D., Erickson, P. J., Miller, E. S., Gerzoff, R. B., Liles, W., Silver, H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4674
container_issue 10
container_start_page 4665
container_title Geophysical research letters
container_volume 45
creator Frissell, N. A.
Katz, J. D.
Gunning, S. W.
Vega, J. S.
Gerrard, A. J.
Earle, G. D.
Moses, M. L.
West, M. L.
Huba, J. D.
Erickson, P. J.
Miller, E. S.
Gerzoff, R. B.
Liles, W.
Silver, H. W.
description On 21 August 2017, a total solar eclipse traversed the continental United States and caused large‐scale changes in ionospheric densities. These were detected as changes in medium‐ and high‐frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse‐ionospheric study to make use of measurements from a citizen‐operated, global‐scale HF propagation network and develop tools for comparison to a physics‐based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse‐induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h < 125 km with elevation angles θ < 10°. Plain Language Summary On 21 August 2017, the shadow of the moon traveled across the continental United States from Oregon to South Carolina during a total solar eclipse. While total eclipses are best known for their stunning visual display, they also cause changes to the ionosphere, an electrically charged layer of the upper atmosphere. These changes modify how medium‐ and high‐frequency radio waves (300 kHz to 30 MHz) travel. To help study these changes, ham radio operators communicated with each other before, during, and after the eclipse while automated monitoring systems logged their communications. These logs are compared with outputs of an eclipsed version of the ionospheric research model SAMI3. By comparing observations with the model, we can better understand how the eclipse affected both the ionosphere and radio propagation. Key Points Large‐scale citizen science experiment probes eclipse‐induced ionospheric changes Eclipse effects are observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz Observations are consistent with an eclipse‐induced weakening of the D, E, and F ionospheric regions
doi_str_mv 10.1029/2018GL077324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055652174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055652174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3444-f69330cb588655b60e13015cf52ae19d5991097c09c43d76abf57cf0156a981f3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEuXnxgNY4kphbcdxfKyqEioFIRU4W65j01RpHOxEqG-PSzlw4rSr3U8zo0HohsA9ASofKJCirEAIRrMTNCEyy6YFgDhFEwCZdiryc3QR4xYAGDAyQerZ17Ztug882-nBjgGvdN14_OrHrk7niL3Dw8bipe987Dc2NAavbOx9Fy0e_M8v-QpcBquHpHIgdIcXpm36aK_QmdNttNe_8xK9Py7e5k_T6qVczmfV1LAspXS5ZAzMmhdFzvk6B0sYEG4cp9oSWXMpCUhhQJqM1SLXa8eFcQnJtSyIY5fo9qjbB_852jiorR9DlywVBc5zTonIEnV3pEzwMQbrVB-anQ57RUAdKlR_K0w4PeJfTWv3_7KqXFU8OWTsG4DNb9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055652174</pqid></control><display><type>article</type><title>Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Frissell, N. A. ; Katz, J. D. ; Gunning, S. W. ; Vega, J. S. ; Gerrard, A. J. ; Earle, G. D. ; Moses, M. L. ; West, M. L. ; Huba, J. D. ; Erickson, P. J. ; Miller, E. S. ; Gerzoff, R. B. ; Liles, W. ; Silver, H. W.</creator><creatorcontrib>Frissell, N. A. ; Katz, J. D. ; Gunning, S. W. ; Vega, J. S. ; Gerrard, A. J. ; Earle, G. D. ; Moses, M. L. ; West, M. L. ; Huba, J. D. ; Erickson, P. J. ; Miller, E. S. ; Gerzoff, R. B. ; Liles, W. ; Silver, H. W.</creatorcontrib><description>On 21 August 2017, a total solar eclipse traversed the continental United States and caused large‐scale changes in ionospheric densities. These were detected as changes in medium‐ and high‐frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse‐ionospheric study to make use of measurements from a citizen‐operated, global‐scale HF propagation network and develop tools for comparison to a physics‐based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse‐induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h &lt; 125 km with elevation angles θ &lt; 10°. Plain Language Summary On 21 August 2017, the shadow of the moon traveled across the continental United States from Oregon to South Carolina during a total solar eclipse. While total eclipses are best known for their stunning visual display, they also cause changes to the ionosphere, an electrically charged layer of the upper atmosphere. These changes modify how medium‐ and high‐frequency radio waves (300 kHz to 30 MHz) travel. To help study these changes, ham radio operators communicated with each other before, during, and after the eclipse while automated monitoring systems logged their communications. These logs are compared with outputs of an eclipsed version of the ionospheric research model SAMI3. By comparing observations with the model, we can better understand how the eclipse affected both the ionosphere and radio propagation. Key Points Large‐scale citizen science experiment probes eclipse‐induced ionospheric changes Eclipse effects are observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz Observations are consistent with an eclipse‐induced weakening of the D, E, and F ionospheric regions</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL077324</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>amateur radio ; Atmospheric models ; Change detection ; Charging ; citizen science ; Computer simulation ; Eclipse effects ; Eclipses ; Elevation ; ham radio ; HF propagation ; High frequencies ; Ionosphere ; Ionospheric models ; Ionospheric propagation ; Ionospheric research ; Modelling ; Monitoring systems ; Moon ; Physics ; Propagation ; Radio ; Radio waves ; solar eclipse ; Solar eclipses ; Soundings ; Upper atmosphere</subject><ispartof>Geophysical research letters, 2018-05, Vol.45 (10), p.4665-4674</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3444-f69330cb588655b60e13015cf52ae19d5991097c09c43d76abf57cf0156a981f3</citedby><cites>FETCH-LOGICAL-c3444-f69330cb588655b60e13015cf52ae19d5991097c09c43d76abf57cf0156a981f3</cites><orcidid>0000-0002-0031-9324 ; 0000-0002-2958-8552 ; 0000-0003-1969-9950 ; 0000-0002-1930-0076 ; 0000-0002-9626-2085 ; 0000-0001-5948-2196 ; 0000-0002-2968-9126 ; 0000-0002-8398-4222 ; 0000-0003-0596-7854 ; 0000-0003-3895-0493 ; 0000-0002-7950-6500 ; 0000-0002-4538-6109 ; 0000-0001-7824-234X ; 0000-0002-1822-2600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL077324$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL077324$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids></links><search><creatorcontrib>Frissell, N. A.</creatorcontrib><creatorcontrib>Katz, J. D.</creatorcontrib><creatorcontrib>Gunning, S. W.</creatorcontrib><creatorcontrib>Vega, J. S.</creatorcontrib><creatorcontrib>Gerrard, A. J.</creatorcontrib><creatorcontrib>Earle, G. D.</creatorcontrib><creatorcontrib>Moses, M. L.</creatorcontrib><creatorcontrib>West, M. L.</creatorcontrib><creatorcontrib>Huba, J. D.</creatorcontrib><creatorcontrib>Erickson, P. J.</creatorcontrib><creatorcontrib>Miller, E. S.</creatorcontrib><creatorcontrib>Gerzoff, R. B.</creatorcontrib><creatorcontrib>Liles, W.</creatorcontrib><creatorcontrib>Silver, H. W.</creatorcontrib><title>Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse</title><title>Geophysical research letters</title><description>On 21 August 2017, a total solar eclipse traversed the continental United States and caused large‐scale changes in ionospheric densities. These were detected as changes in medium‐ and high‐frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse‐ionospheric study to make use of measurements from a citizen‐operated, global‐scale HF propagation network and develop tools for comparison to a physics‐based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse‐induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h &lt; 125 km with elevation angles θ &lt; 10°. Plain Language Summary On 21 August 2017, the shadow of the moon traveled across the continental United States from Oregon to South Carolina during a total solar eclipse. While total eclipses are best known for their stunning visual display, they also cause changes to the ionosphere, an electrically charged layer of the upper atmosphere. These changes modify how medium‐ and high‐frequency radio waves (300 kHz to 30 MHz) travel. To help study these changes, ham radio operators communicated with each other before, during, and after the eclipse while automated monitoring systems logged their communications. These logs are compared with outputs of an eclipsed version of the ionospheric research model SAMI3. By comparing observations with the model, we can better understand how the eclipse affected both the ionosphere and radio propagation. Key Points Large‐scale citizen science experiment probes eclipse‐induced ionospheric changes Eclipse effects are observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz Observations are consistent with an eclipse‐induced weakening of the D, E, and F ionospheric regions</description><subject>amateur radio</subject><subject>Atmospheric models</subject><subject>Change detection</subject><subject>Charging</subject><subject>citizen science</subject><subject>Computer simulation</subject><subject>Eclipse effects</subject><subject>Eclipses</subject><subject>Elevation</subject><subject>ham radio</subject><subject>HF propagation</subject><subject>High frequencies</subject><subject>Ionosphere</subject><subject>Ionospheric models</subject><subject>Ionospheric propagation</subject><subject>Ionospheric research</subject><subject>Modelling</subject><subject>Monitoring systems</subject><subject>Moon</subject><subject>Physics</subject><subject>Propagation</subject><subject>Radio</subject><subject>Radio waves</subject><subject>solar eclipse</subject><subject>Solar eclipses</subject><subject>Soundings</subject><subject>Upper atmosphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kM1OwzAQhC0EEuXnxgNY4kphbcdxfKyqEioFIRU4W65j01RpHOxEqG-PSzlw4rSr3U8zo0HohsA9ASofKJCirEAIRrMTNCEyy6YFgDhFEwCZdiryc3QR4xYAGDAyQerZ17Ztug882-nBjgGvdN14_OrHrk7niL3Dw8bipe987Dc2NAavbOx9Fy0e_M8v-QpcBquHpHIgdIcXpm36aK_QmdNttNe_8xK9Py7e5k_T6qVczmfV1LAspXS5ZAzMmhdFzvk6B0sYEG4cp9oSWXMpCUhhQJqM1SLXa8eFcQnJtSyIY5fo9qjbB_852jiorR9DlywVBc5zTonIEnV3pEzwMQbrVB-anQ57RUAdKlR_K0w4PeJfTWv3_7KqXFU8OWTsG4DNb9E</recordid><startdate>20180528</startdate><enddate>20180528</enddate><creator>Frissell, N. A.</creator><creator>Katz, J. D.</creator><creator>Gunning, S. W.</creator><creator>Vega, J. S.</creator><creator>Gerrard, A. J.</creator><creator>Earle, G. D.</creator><creator>Moses, M. L.</creator><creator>West, M. L.</creator><creator>Huba, J. D.</creator><creator>Erickson, P. J.</creator><creator>Miller, E. S.</creator><creator>Gerzoff, R. B.</creator><creator>Liles, W.</creator><creator>Silver, H. W.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0031-9324</orcidid><orcidid>https://orcid.org/0000-0002-2958-8552</orcidid><orcidid>https://orcid.org/0000-0003-1969-9950</orcidid><orcidid>https://orcid.org/0000-0002-1930-0076</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid><orcidid>https://orcid.org/0000-0001-5948-2196</orcidid><orcidid>https://orcid.org/0000-0002-2968-9126</orcidid><orcidid>https://orcid.org/0000-0002-8398-4222</orcidid><orcidid>https://orcid.org/0000-0003-0596-7854</orcidid><orcidid>https://orcid.org/0000-0003-3895-0493</orcidid><orcidid>https://orcid.org/0000-0002-7950-6500</orcidid><orcidid>https://orcid.org/0000-0002-4538-6109</orcidid><orcidid>https://orcid.org/0000-0001-7824-234X</orcidid><orcidid>https://orcid.org/0000-0002-1822-2600</orcidid></search><sort><creationdate>20180528</creationdate><title>Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse</title><author>Frissell, N. A. ; Katz, J. D. ; Gunning, S. W. ; Vega, J. S. ; Gerrard, A. J. ; Earle, G. D. ; Moses, M. L. ; West, M. L. ; Huba, J. D. ; Erickson, P. J. ; Miller, E. S. ; Gerzoff, R. B. ; Liles, W. ; Silver, H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3444-f69330cb588655b60e13015cf52ae19d5991097c09c43d76abf57cf0156a981f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>amateur radio</topic><topic>Atmospheric models</topic><topic>Change detection</topic><topic>Charging</topic><topic>citizen science</topic><topic>Computer simulation</topic><topic>Eclipse effects</topic><topic>Eclipses</topic><topic>Elevation</topic><topic>ham radio</topic><topic>HF propagation</topic><topic>High frequencies</topic><topic>Ionosphere</topic><topic>Ionospheric models</topic><topic>Ionospheric propagation</topic><topic>Ionospheric research</topic><topic>Modelling</topic><topic>Monitoring systems</topic><topic>Moon</topic><topic>Physics</topic><topic>Propagation</topic><topic>Radio</topic><topic>Radio waves</topic><topic>solar eclipse</topic><topic>Solar eclipses</topic><topic>Soundings</topic><topic>Upper atmosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frissell, N. A.</creatorcontrib><creatorcontrib>Katz, J. D.</creatorcontrib><creatorcontrib>Gunning, S. W.</creatorcontrib><creatorcontrib>Vega, J. S.</creatorcontrib><creatorcontrib>Gerrard, A. J.</creatorcontrib><creatorcontrib>Earle, G. D.</creatorcontrib><creatorcontrib>Moses, M. L.</creatorcontrib><creatorcontrib>West, M. L.</creatorcontrib><creatorcontrib>Huba, J. D.</creatorcontrib><creatorcontrib>Erickson, P. J.</creatorcontrib><creatorcontrib>Miller, E. S.</creatorcontrib><creatorcontrib>Gerzoff, R. B.</creatorcontrib><creatorcontrib>Liles, W.</creatorcontrib><creatorcontrib>Silver, H. W.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frissell, N. A.</au><au>Katz, J. D.</au><au>Gunning, S. W.</au><au>Vega, J. S.</au><au>Gerrard, A. J.</au><au>Earle, G. D.</au><au>Moses, M. L.</au><au>West, M. L.</au><au>Huba, J. D.</au><au>Erickson, P. J.</au><au>Miller, E. S.</au><au>Gerzoff, R. B.</au><au>Liles, W.</au><au>Silver, H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse</atitle><jtitle>Geophysical research letters</jtitle><date>2018-05-28</date><risdate>2018</risdate><volume>45</volume><issue>10</issue><spage>4665</spage><epage>4674</epage><pages>4665-4674</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>On 21 August 2017, a total solar eclipse traversed the continental United States and caused large‐scale changes in ionospheric densities. These were detected as changes in medium‐ and high‐frequency radio propagation by the Solar Eclipse QSO Party citizen science experiment organized by the Ham Radio Science Citizen Investigation (hamsci.org). This is the first eclipse‐ionospheric study to make use of measurements from a citizen‐operated, global‐scale HF propagation network and develop tools for comparison to a physics‐based model ionosphere. Eclipse effects were observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz and are consistent with eclipse‐induced ionospheric densities. Observations were simulated using the PHaRLAP raytracing toolkit in conjunction with the eclipsed SAMI3 ionospheric model. Model results suggest 1.8, 3.5, and 7 MHz refracted at h≥125 km altitude with elevation angles θ≥22°, while 14 MHz signals refracted at h &lt; 125 km with elevation angles θ &lt; 10°. Plain Language Summary On 21 August 2017, the shadow of the moon traveled across the continental United States from Oregon to South Carolina during a total solar eclipse. While total eclipses are best known for their stunning visual display, they also cause changes to the ionosphere, an electrically charged layer of the upper atmosphere. These changes modify how medium‐ and high‐frequency radio waves (300 kHz to 30 MHz) travel. To help study these changes, ham radio operators communicated with each other before, during, and after the eclipse while automated monitoring systems logged their communications. These logs are compared with outputs of an eclipsed version of the ionospheric research model SAMI3. By comparing observations with the model, we can better understand how the eclipse affected both the ionosphere and radio propagation. Key Points Large‐scale citizen science experiment probes eclipse‐induced ionospheric changes Eclipse effects are observed ±0.3 hr on 1.8 MHz, ±0.75 hr on 3.5 and 7 MHz, and ±1 hr on 14 MHz Observations are consistent with an eclipse‐induced weakening of the D, E, and F ionospheric regions</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL077324</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0031-9324</orcidid><orcidid>https://orcid.org/0000-0002-2958-8552</orcidid><orcidid>https://orcid.org/0000-0003-1969-9950</orcidid><orcidid>https://orcid.org/0000-0002-1930-0076</orcidid><orcidid>https://orcid.org/0000-0002-9626-2085</orcidid><orcidid>https://orcid.org/0000-0001-5948-2196</orcidid><orcidid>https://orcid.org/0000-0002-2968-9126</orcidid><orcidid>https://orcid.org/0000-0002-8398-4222</orcidid><orcidid>https://orcid.org/0000-0003-0596-7854</orcidid><orcidid>https://orcid.org/0000-0003-3895-0493</orcidid><orcidid>https://orcid.org/0000-0002-7950-6500</orcidid><orcidid>https://orcid.org/0000-0002-4538-6109</orcidid><orcidid>https://orcid.org/0000-0001-7824-234X</orcidid><orcidid>https://orcid.org/0000-0002-1822-2600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2018-05, Vol.45 (10), p.4665-4674
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2055652174
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects amateur radio
Atmospheric models
Change detection
Charging
citizen science
Computer simulation
Eclipse effects
Eclipses
Elevation
ham radio
HF propagation
High frequencies
Ionosphere
Ionospheric models
Ionospheric propagation
Ionospheric research
Modelling
Monitoring systems
Moon
Physics
Propagation
Radio
Radio waves
solar eclipse
Solar eclipses
Soundings
Upper atmosphere
title Modeling Amateur Radio Soundings of the Ionospheric Response to the 2017 Great American Eclipse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T06%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Amateur%20Radio%20Soundings%20of%20the%20Ionospheric%20Response%20to%20the%202017%20Great%20American%20Eclipse&rft.jtitle=Geophysical%20research%20letters&rft.au=Frissell,%20N.%20A.&rft.date=2018-05-28&rft.volume=45&rft.issue=10&rft.spage=4665&rft.epage=4674&rft.pages=4665-4674&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL077324&rft_dat=%3Cproquest_cross%3E2055652174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055652174&rft_id=info:pmid/&rfr_iscdi=true