Structural Properties of Additive Nano/Microcellular Automata

A detailed structural analysis of 2D patterns generated by one‐dimensional M‐state additive cellular automata (ACA), where M is a prime (p) to a non‐negative power (t), is performed by using the transition matrix (TM), the barycentric fixed‐mass (BFM) method, and the small‐angle scattering (SAS) tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2018-06, Vol.530 (6), p.n/a
Hauptverfasser: Anitas, Eugen Mircea, Slyamov, Azat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Annalen der Physik
container_volume 530
creator Anitas, Eugen Mircea
Slyamov, Azat
description A detailed structural analysis of 2D patterns generated by one‐dimensional M‐state additive cellular automata (ACA), where M is a prime (p) to a non‐negative power (t), is performed by using the transition matrix (TM), the barycentric fixed‐mass (BFM) method, and the small‐angle scattering (SAS) technique. The BFM method shows that, for M‐state ACA, the subsets of particular states are multifractals. The fractal dimensions of ACA of a given transition rule are shown to be equal at constant p and arbitrary t, and there is a prime p at which the fractal dimensions of different ACA are equal. The SAS technique is shown to be able to differentiate between patterns of such ACA. In addition, SAS can also provide complementary information about the overall size, number of elements, and number of rows generated by ACA. In the case of monofractals, SAS can recover also the scaling factor, which is shown to be, for the M=pt‐state ACA, the inverse of p. The above findings on the 2‐ and 3‐state Rule 90 and Rule 150 are illustrated as idealized models with possible applications toward assembly of nanoparticles into programmable patterns or in modeling biological systems such as fibroblast aggregation, the growth of bacterial colonies, neuronal maps, and virus spreading. The small‐angle scattering technique and barycentric fixed‐mass method are applied to study the structural properties of fractals generated by M‐state additive cellular automata (ACA) and their subsets of different states. It is shown that an M‐state ACA is a monofractal, while the ACA subsets of distinct states are multifractals.
doi_str_mv 10.1002/andp.201800004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055649791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055649791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-8a4bb493e4f36d0f8e84cd5477eb3847557fe0c8327b29cfd4a69daf3bee61e03</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWGqvnhc8b83XbpKDh6V-Qq0F9Ryymwls2TZrNqv0vzelokfnMsPwe_OGh9AlwXOCMb02O9vPKSYSp-InaEIKSnImpTpFk7Riacb8HM2GYXNACkwx5RN08xrD2MQxmC5bB99DiC0MmXdZZW0b20_IVmbnr5_bJvgGum7sTMiqMfqtieYCnTnTDTD76VP0fn_3tnjMly8PT4tqmTeMCJ5Lw-uaKwbcsdJiJ0HyxhZcCKiZ5KIohAPcSEZFTVXjLDelssaxGqAkgNkUXR3v9sF_jDBEvfFj2CVLTXFRlFwJRRI1P1Lp1WEI4HQf2q0Je02wPqSkDynp35SSQB0FX20H-39oXa1u13_abyybay8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055649791</pqid></control><display><type>article</type><title>Structural Properties of Additive Nano/Microcellular Automata</title><source>Access via Wiley Online Library</source><creator>Anitas, Eugen Mircea ; Slyamov, Azat</creator><creatorcontrib>Anitas, Eugen Mircea ; Slyamov, Azat</creatorcontrib><description>A detailed structural analysis of 2D patterns generated by one‐dimensional M‐state additive cellular automata (ACA), where M is a prime (p) to a non‐negative power (t), is performed by using the transition matrix (TM), the barycentric fixed‐mass (BFM) method, and the small‐angle scattering (SAS) technique. The BFM method shows that, for M‐state ACA, the subsets of particular states are multifractals. The fractal dimensions of ACA of a given transition rule are shown to be equal at constant p and arbitrary t, and there is a prime p at which the fractal dimensions of different ACA are equal. The SAS technique is shown to be able to differentiate between patterns of such ACA. In addition, SAS can also provide complementary information about the overall size, number of elements, and number of rows generated by ACA. In the case of monofractals, SAS can recover also the scaling factor, which is shown to be, for the M=pt‐state ACA, the inverse of p. The above findings on the 2‐ and 3‐state Rule 90 and Rule 150 are illustrated as idealized models with possible applications toward assembly of nanoparticles into programmable patterns or in modeling biological systems such as fibroblast aggregation, the growth of bacterial colonies, neuronal maps, and virus spreading. The small‐angle scattering technique and barycentric fixed‐mass method are applied to study the structural properties of fractals generated by M‐state additive cellular automata (ACA) and their subsets of different states. It is shown that an M‐state ACA is a monofractal, while the ACA subsets of distinct states are multifractals.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201800004</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>additive cellular automata ; barycentric fixed‐mass method ; Cellular automata ; Fractals ; Scaling factors ; small‐angle scattering ; Structural analysis ; Two dimensional analysis ; Viruses</subject><ispartof>Annalen der Physik, 2018-06, Vol.530 (6), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-8a4bb493e4f36d0f8e84cd5477eb3847557fe0c8327b29cfd4a69daf3bee61e03</citedby><cites>FETCH-LOGICAL-c3174-8a4bb493e4f36d0f8e84cd5477eb3847557fe0c8327b29cfd4a69daf3bee61e03</cites><orcidid>0000-0003-2693-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.201800004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.201800004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Anitas, Eugen Mircea</creatorcontrib><creatorcontrib>Slyamov, Azat</creatorcontrib><title>Structural Properties of Additive Nano/Microcellular Automata</title><title>Annalen der Physik</title><description>A detailed structural analysis of 2D patterns generated by one‐dimensional M‐state additive cellular automata (ACA), where M is a prime (p) to a non‐negative power (t), is performed by using the transition matrix (TM), the barycentric fixed‐mass (BFM) method, and the small‐angle scattering (SAS) technique. The BFM method shows that, for M‐state ACA, the subsets of particular states are multifractals. The fractal dimensions of ACA of a given transition rule are shown to be equal at constant p and arbitrary t, and there is a prime p at which the fractal dimensions of different ACA are equal. The SAS technique is shown to be able to differentiate between patterns of such ACA. In addition, SAS can also provide complementary information about the overall size, number of elements, and number of rows generated by ACA. In the case of monofractals, SAS can recover also the scaling factor, which is shown to be, for the M=pt‐state ACA, the inverse of p. The above findings on the 2‐ and 3‐state Rule 90 and Rule 150 are illustrated as idealized models with possible applications toward assembly of nanoparticles into programmable patterns or in modeling biological systems such as fibroblast aggregation, the growth of bacterial colonies, neuronal maps, and virus spreading. The small‐angle scattering technique and barycentric fixed‐mass method are applied to study the structural properties of fractals generated by M‐state additive cellular automata (ACA) and their subsets of different states. It is shown that an M‐state ACA is a monofractal, while the ACA subsets of distinct states are multifractals.</description><subject>additive cellular automata</subject><subject>barycentric fixed‐mass method</subject><subject>Cellular automata</subject><subject>Fractals</subject><subject>Scaling factors</subject><subject>small‐angle scattering</subject><subject>Structural analysis</subject><subject>Two dimensional analysis</subject><subject>Viruses</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWGqvnhc8b83XbpKDh6V-Qq0F9Ryymwls2TZrNqv0vzelokfnMsPwe_OGh9AlwXOCMb02O9vPKSYSp-InaEIKSnImpTpFk7Riacb8HM2GYXNACkwx5RN08xrD2MQxmC5bB99DiC0MmXdZZW0b20_IVmbnr5_bJvgGum7sTMiqMfqtieYCnTnTDTD76VP0fn_3tnjMly8PT4tqmTeMCJ5Lw-uaKwbcsdJiJ0HyxhZcCKiZ5KIohAPcSEZFTVXjLDelssaxGqAkgNkUXR3v9sF_jDBEvfFj2CVLTXFRlFwJRRI1P1Lp1WEI4HQf2q0Je02wPqSkDynp35SSQB0FX20H-39oXa1u13_abyybay8</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Anitas, Eugen Mircea</creator><creator>Slyamov, Azat</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></search><sort><creationdate>201806</creationdate><title>Structural Properties of Additive Nano/Microcellular Automata</title><author>Anitas, Eugen Mircea ; Slyamov, Azat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-8a4bb493e4f36d0f8e84cd5477eb3847557fe0c8327b29cfd4a69daf3bee61e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>additive cellular automata</topic><topic>barycentric fixed‐mass method</topic><topic>Cellular automata</topic><topic>Fractals</topic><topic>Scaling factors</topic><topic>small‐angle scattering</topic><topic>Structural analysis</topic><topic>Two dimensional analysis</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anitas, Eugen Mircea</creatorcontrib><creatorcontrib>Slyamov, Azat</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anitas, Eugen Mircea</au><au>Slyamov, Azat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Properties of Additive Nano/Microcellular Automata</atitle><jtitle>Annalen der Physik</jtitle><date>2018-06</date><risdate>2018</risdate><volume>530</volume><issue>6</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>A detailed structural analysis of 2D patterns generated by one‐dimensional M‐state additive cellular automata (ACA), where M is a prime (p) to a non‐negative power (t), is performed by using the transition matrix (TM), the barycentric fixed‐mass (BFM) method, and the small‐angle scattering (SAS) technique. The BFM method shows that, for M‐state ACA, the subsets of particular states are multifractals. The fractal dimensions of ACA of a given transition rule are shown to be equal at constant p and arbitrary t, and there is a prime p at which the fractal dimensions of different ACA are equal. The SAS technique is shown to be able to differentiate between patterns of such ACA. In addition, SAS can also provide complementary information about the overall size, number of elements, and number of rows generated by ACA. In the case of monofractals, SAS can recover also the scaling factor, which is shown to be, for the M=pt‐state ACA, the inverse of p. The above findings on the 2‐ and 3‐state Rule 90 and Rule 150 are illustrated as idealized models with possible applications toward assembly of nanoparticles into programmable patterns or in modeling biological systems such as fibroblast aggregation, the growth of bacterial colonies, neuronal maps, and virus spreading. The small‐angle scattering technique and barycentric fixed‐mass method are applied to study the structural properties of fractals generated by M‐state additive cellular automata (ACA) and their subsets of different states. It is shown that an M‐state ACA is a monofractal, while the ACA subsets of distinct states are multifractals.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201800004</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2018-06, Vol.530 (6), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_2055649791
source Access via Wiley Online Library
subjects additive cellular automata
barycentric fixed‐mass method
Cellular automata
Fractals
Scaling factors
small‐angle scattering
Structural analysis
Two dimensional analysis
Viruses
title Structural Properties of Additive Nano/Microcellular Automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Properties%20of%20Additive%20Nano/Microcellular%20Automata&rft.jtitle=Annalen%20der%20Physik&rft.au=Anitas,%20Eugen%20Mircea&rft.date=2018-06&rft.volume=530&rft.issue=6&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201800004&rft_dat=%3Cproquest_cross%3E2055649791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055649791&rft_id=info:pmid/&rfr_iscdi=true