Dynamic control of the space tethered system

We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2017-02, Vol.389, p.41-51
Hauptverfasser: Malashin, A.A., Smirnov, N.N., Bryukvina, O.Yu, Dyakov, P.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 41
container_title Journal of sound and vibration
container_volume 389
creator Malashin, A.A.
Smirnov, N.N.
Bryukvina, O.Yu
Dyakov, P.A.
description We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudinal and transverse waves and we consider a non-classical version of the problem with one moving boundary. We formulate a mathematical model and perform the analytic and numerical analysis of the boundary control problem based on the Lyapunov method. A scheme of the deployment mechanism is suggested. It includes a control torque and transverse displacement of the boundary and ensures stable deployment of the whole system. •Boundary control of transverse and longitudinal vibrations.•Suppression of vibrations, asymptotic stability of the tethered system's deployment.•Efficient mechanism for stable deployment.•Dynamics of the tether is described by PDEs.•Numerical calculations prove asymptotic stability of the deployment process.
doi_str_mv 10.1016/j.jsv.2016.11.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055595776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X16306708</els_id><sourcerecordid>2055595776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c2885da4ca445efe4c7511de1d14f7f16ed37c51641c2bfc5b8c2f350d197ecc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCV3fNZJP9wJPUTyh4UfAWtpMJ7tJuapIW-u9NWc-e5j28z8zwMHYNvAAO1d1QDGFfiBQLgIKL6oTNgLcqb1TVnLIZ50LksuJf5-wihIFz3spSztjt42HsNj1m6Mbo3TpzNovflIVth5RFStmTycIhRNpcsjPbrQNd_c05-3x--li85sv3l7fFwzLHUqiYo2gaZTqJnZSKLEmsFYAhMCBtbaEiU9aooJKAYmVRrRoUtlTcQFsTYjlnN9PerXc_OwpRD27nx3RSC66UalVdV6kFUwu9C8GT1Vvfbzp_0MD1UYoedJKij1I0gE5SEnM_MZTe3_fkdcCeRiTTe8Kojev_oX8BZ_1pew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055595776</pqid></control><display><type>article</type><title>Dynamic control of the space tethered system</title><source>Elsevier ScienceDirect Journals</source><creator>Malashin, A.A. ; Smirnov, N.N. ; Bryukvina, O.Yu ; Dyakov, P.A.</creator><creatorcontrib>Malashin, A.A. ; Smirnov, N.N. ; Bryukvina, O.Yu ; Dyakov, P.A.</creatorcontrib><description>We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudinal and transverse waves and we consider a non-classical version of the problem with one moving boundary. We formulate a mathematical model and perform the analytic and numerical analysis of the boundary control problem based on the Lyapunov method. A scheme of the deployment mechanism is suggested. It includes a control torque and transverse displacement of the boundary and ensures stable deployment of the whole system. •Boundary control of transverse and longitudinal vibrations.•Suppression of vibrations, asymptotic stability of the tethered system's deployment.•Efficient mechanism for stable deployment.•Dynamics of the tether is described by PDEs.•Numerical calculations prove asymptotic stability of the deployment process.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2016.11.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Asymptotic methods ; Asymptotic stability ; Boundary control ; Dynamic control ; Lyapunov method ; Mathematical models ; Nonlinear differential equations ; Nonlinear equations ; Nonlinear transverse and longitudinal vibration ; Numerical analysis ; Partial differential equations ; Transverse waves ; Vibration</subject><ispartof>Journal of sound and vibration, 2017-02, Vol.389, p.41-51</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 17, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c2885da4ca445efe4c7511de1d14f7f16ed37c51641c2bfc5b8c2f350d197ecc3</citedby><cites>FETCH-LOGICAL-c325t-c2885da4ca445efe4c7511de1d14f7f16ed37c51641c2bfc5b8c2f350d197ecc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X16306708$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Malashin, A.A.</creatorcontrib><creatorcontrib>Smirnov, N.N.</creatorcontrib><creatorcontrib>Bryukvina, O.Yu</creatorcontrib><creatorcontrib>Dyakov, P.A.</creatorcontrib><title>Dynamic control of the space tethered system</title><title>Journal of sound and vibration</title><description>We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudinal and transverse waves and we consider a non-classical version of the problem with one moving boundary. We formulate a mathematical model and perform the analytic and numerical analysis of the boundary control problem based on the Lyapunov method. A scheme of the deployment mechanism is suggested. It includes a control torque and transverse displacement of the boundary and ensures stable deployment of the whole system. •Boundary control of transverse and longitudinal vibrations.•Suppression of vibrations, asymptotic stability of the tethered system's deployment.•Efficient mechanism for stable deployment.•Dynamics of the tether is described by PDEs.•Numerical calculations prove asymptotic stability of the deployment process.</description><subject>Asymptotic methods</subject><subject>Asymptotic stability</subject><subject>Boundary control</subject><subject>Dynamic control</subject><subject>Lyapunov method</subject><subject>Mathematical models</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear equations</subject><subject>Nonlinear transverse and longitudinal vibration</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Transverse waves</subject><subject>Vibration</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCV3fNZJP9wJPUTyh4UfAWtpMJ7tJuapIW-u9NWc-e5j28z8zwMHYNvAAO1d1QDGFfiBQLgIKL6oTNgLcqb1TVnLIZ50LksuJf5-wihIFz3spSztjt42HsNj1m6Mbo3TpzNovflIVth5RFStmTycIhRNpcsjPbrQNd_c05-3x--li85sv3l7fFwzLHUqiYo2gaZTqJnZSKLEmsFYAhMCBtbaEiU9aooJKAYmVRrRoUtlTcQFsTYjlnN9PerXc_OwpRD27nx3RSC66UalVdV6kFUwu9C8GT1Vvfbzp_0MD1UYoedJKij1I0gE5SEnM_MZTe3_fkdcCeRiTTe8Kojev_oX8BZ_1pew</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Malashin, A.A.</creator><creator>Smirnov, N.N.</creator><creator>Bryukvina, O.Yu</creator><creator>Dyakov, P.A.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170217</creationdate><title>Dynamic control of the space tethered system</title><author>Malashin, A.A. ; Smirnov, N.N. ; Bryukvina, O.Yu ; Dyakov, P.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c2885da4ca445efe4c7511de1d14f7f16ed37c51641c2bfc5b8c2f350d197ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic stability</topic><topic>Boundary control</topic><topic>Dynamic control</topic><topic>Lyapunov method</topic><topic>Mathematical models</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear equations</topic><topic>Nonlinear transverse and longitudinal vibration</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Transverse waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malashin, A.A.</creatorcontrib><creatorcontrib>Smirnov, N.N.</creatorcontrib><creatorcontrib>Bryukvina, O.Yu</creatorcontrib><creatorcontrib>Dyakov, P.A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malashin, A.A.</au><au>Smirnov, N.N.</au><au>Bryukvina, O.Yu</au><au>Dyakov, P.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic control of the space tethered system</atitle><jtitle>Journal of sound and vibration</jtitle><date>2017-02-17</date><risdate>2017</risdate><volume>389</volume><spage>41</spage><epage>51</epage><pages>41-51</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudinal and transverse waves and we consider a non-classical version of the problem with one moving boundary. We formulate a mathematical model and perform the analytic and numerical analysis of the boundary control problem based on the Lyapunov method. A scheme of the deployment mechanism is suggested. It includes a control torque and transverse displacement of the boundary and ensures stable deployment of the whole system. •Boundary control of transverse and longitudinal vibrations.•Suppression of vibrations, asymptotic stability of the tethered system's deployment.•Efficient mechanism for stable deployment.•Dynamics of the tether is described by PDEs.•Numerical calculations prove asymptotic stability of the deployment process.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2016.11.026</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2017-02, Vol.389, p.41-51
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2055595776
source Elsevier ScienceDirect Journals
subjects Asymptotic methods
Asymptotic stability
Boundary control
Dynamic control
Lyapunov method
Mathematical models
Nonlinear differential equations
Nonlinear equations
Nonlinear transverse and longitudinal vibration
Numerical analysis
Partial differential equations
Transverse waves
Vibration
title Dynamic control of the space tethered system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20control%20of%20the%20space%20tethered%20system&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Malashin,%20A.A.&rft.date=2017-02-17&rft.volume=389&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2016.11.026&rft_dat=%3Cproquest_cross%3E2055595776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055595776&rft_id=info:pmid/&rft_els_id=S0022460X16306708&rfr_iscdi=true