An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models

The nonlinear dynamic hysteretic models used in nonlinear dynamic analysis contain generally lots of model parameters which need to be identified accurately and effectively. The accuracy and effectiveness of identification depend generally on the complexity of model, number of model parameters and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2017-02, Vol.389, p.153-167
Hauptverfasser: Zhang, Junhao, Xia, Pinqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 153
container_title Journal of sound and vibration
container_volume 389
creator Zhang, Junhao
Xia, Pinqi
description The nonlinear dynamic hysteretic models used in nonlinear dynamic analysis contain generally lots of model parameters which need to be identified accurately and effectively. The accuracy and effectiveness of identification depend generally on the complexity of model, number of model parameters and proximity of initial values of the parameters. The particle swarm optimization (PSO) algorithm has the random searching ability and has been widely applied to the parameter identification in the nonlinear dynamic hysteretic models. However, the PSO algorithm may get trapped in the local optimum and appear the premature convergence not to obtain the real optimum results. In this paper, an improved PSO algorithm for identifying parameters of nonlinear dynamic hysteretic models has been presented by defining a fitness function for hysteretic model. The improved PSO algorithm can enhance the global searching ability and avoid to appear the premature convergence of the conventional PSO algorithm, and has been applied to identify the parameters of two nonlinear dynamic hysteretic models which are the Leishman-Beddoes (LB) dynamic stall model of rotor blade and the anelastic displacement fields (ADF) model of elastomeric damper which can be used as the lead-lag damper in rotor. The accuracy and effectiveness of the improved PSO algorithm for identifying parameters of the LB model and the ADF model are validated by comparing the identified results with test results. The investigations have indicated that in order to reduce the influence of randomness caused by using the PSO algorithm on the accuracy of identified parameters, it is an effective method to increase the number of repeated identifications.
doi_str_mv 10.1016/j.jsv.2016.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055589815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X16306290</els_id><sourcerecordid>2055589815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-8e19f32586418f326586dbf8a9f1a097a08a5192344c1d8c443a1e1b433622a43</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA866Z3eyaxVMpfkGhggpeJKTZWZtlN6lJWui_N6WePc1zeN8Z5iHkGlgODOrbPu_DLi8S5gA5Y_UJmQBrqkxUtTglE8aKIuM1-zwnFyH0jLGGl3xCvmaWmnHj3Q5b-vq2pGr4dt7E9Ug75-lGeTViRE9NizaazmgVjbPUddQ6OxiLytN2b9VoNF3vQ4piTDi6FodwSc46NQS8-ptT8vH48D5_zhbLp5f5bJHpsqhiJhCaLpGoOYgEdaJ21QnVdKBYc6eYUBU0Rcm5hlZozksFCCtelnVRKF5Oyc1xb3rkZ4shyt5tvU0nZcGqqhKNgCql4JjS3oXgsZMbb0bl9xKYPFiUvUwW5cGiBJDJYurcHzvpG9wZ9DJog1ZjazzqKFtn_mn_Ak3Yem0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055589815</pqid></control><display><type>article</type><title>An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Junhao ; Xia, Pinqi</creator><creatorcontrib>Zhang, Junhao ; Xia, Pinqi</creatorcontrib><description>The nonlinear dynamic hysteretic models used in nonlinear dynamic analysis contain generally lots of model parameters which need to be identified accurately and effectively. The accuracy and effectiveness of identification depend generally on the complexity of model, number of model parameters and proximity of initial values of the parameters. The particle swarm optimization (PSO) algorithm has the random searching ability and has been widely applied to the parameter identification in the nonlinear dynamic hysteretic models. However, the PSO algorithm may get trapped in the local optimum and appear the premature convergence not to obtain the real optimum results. In this paper, an improved PSO algorithm for identifying parameters of nonlinear dynamic hysteretic models has been presented by defining a fitness function for hysteretic model. The improved PSO algorithm can enhance the global searching ability and avoid to appear the premature convergence of the conventional PSO algorithm, and has been applied to identify the parameters of two nonlinear dynamic hysteretic models which are the Leishman-Beddoes (LB) dynamic stall model of rotor blade and the anelastic displacement fields (ADF) model of elastomeric damper which can be used as the lead-lag damper in rotor. The accuracy and effectiveness of the improved PSO algorithm for identifying parameters of the LB model and the ADF model are validated by comparing the identified results with test results. The investigations have indicated that in order to reduce the influence of randomness caused by using the PSO algorithm on the accuracy of identified parameters, it is an effective method to increase the number of repeated identifications.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2016.11.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Anelasticity ; Convergence ; Elastomeric damper ; Elastomers ; Fitness ; Hysterectomy ; Hysteresis ; Hysteretic model ; Mathematical models ; Nonlinear analysis ; Nonlinear equations ; Optimization algorithms ; Parameter identification ; Particle swarm optimization ; PSO algorithm ; Rotor blades ; Rotor dynamic stall ; Searching ; Studies</subject><ispartof>Journal of sound and vibration, 2017-02, Vol.389, p.153-167</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Feb 17, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-8e19f32586418f326586dbf8a9f1a097a08a5192344c1d8c443a1e1b433622a43</citedby><cites>FETCH-LOGICAL-c325t-8e19f32586418f326586dbf8a9f1a097a08a5192344c1d8c443a1e1b433622a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2016.11.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Junhao</creatorcontrib><creatorcontrib>Xia, Pinqi</creatorcontrib><title>An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models</title><title>Journal of sound and vibration</title><description>The nonlinear dynamic hysteretic models used in nonlinear dynamic analysis contain generally lots of model parameters which need to be identified accurately and effectively. The accuracy and effectiveness of identification depend generally on the complexity of model, number of model parameters and proximity of initial values of the parameters. The particle swarm optimization (PSO) algorithm has the random searching ability and has been widely applied to the parameter identification in the nonlinear dynamic hysteretic models. However, the PSO algorithm may get trapped in the local optimum and appear the premature convergence not to obtain the real optimum results. In this paper, an improved PSO algorithm for identifying parameters of nonlinear dynamic hysteretic models has been presented by defining a fitness function for hysteretic model. The improved PSO algorithm can enhance the global searching ability and avoid to appear the premature convergence of the conventional PSO algorithm, and has been applied to identify the parameters of two nonlinear dynamic hysteretic models which are the Leishman-Beddoes (LB) dynamic stall model of rotor blade and the anelastic displacement fields (ADF) model of elastomeric damper which can be used as the lead-lag damper in rotor. The accuracy and effectiveness of the improved PSO algorithm for identifying parameters of the LB model and the ADF model are validated by comparing the identified results with test results. The investigations have indicated that in order to reduce the influence of randomness caused by using the PSO algorithm on the accuracy of identified parameters, it is an effective method to increase the number of repeated identifications.</description><subject>Algorithms</subject><subject>Anelasticity</subject><subject>Convergence</subject><subject>Elastomeric damper</subject><subject>Elastomers</subject><subject>Fitness</subject><subject>Hysterectomy</subject><subject>Hysteresis</subject><subject>Hysteretic model</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Optimization algorithms</subject><subject>Parameter identification</subject><subject>Particle swarm optimization</subject><subject>PSO algorithm</subject><subject>Rotor blades</subject><subject>Rotor dynamic stall</subject><subject>Searching</subject><subject>Studies</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA866Z3eyaxVMpfkGhggpeJKTZWZtlN6lJWui_N6WePc1zeN8Z5iHkGlgODOrbPu_DLi8S5gA5Y_UJmQBrqkxUtTglE8aKIuM1-zwnFyH0jLGGl3xCvmaWmnHj3Q5b-vq2pGr4dt7E9Ug75-lGeTViRE9NizaazmgVjbPUddQ6OxiLytN2b9VoNF3vQ4piTDi6FodwSc46NQS8-ptT8vH48D5_zhbLp5f5bJHpsqhiJhCaLpGoOYgEdaJ21QnVdKBYc6eYUBU0Rcm5hlZozksFCCtelnVRKF5Oyc1xb3rkZ4shyt5tvU0nZcGqqhKNgCql4JjS3oXgsZMbb0bl9xKYPFiUvUwW5cGiBJDJYurcHzvpG9wZ9DJog1ZjazzqKFtn_mn_Ak3Yem0</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Zhang, Junhao</creator><creator>Xia, Pinqi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20170217</creationdate><title>An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models</title><author>Zhang, Junhao ; Xia, Pinqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-8e19f32586418f326586dbf8a9f1a097a08a5192344c1d8c443a1e1b433622a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Anelasticity</topic><topic>Convergence</topic><topic>Elastomeric damper</topic><topic>Elastomers</topic><topic>Fitness</topic><topic>Hysterectomy</topic><topic>Hysteresis</topic><topic>Hysteretic model</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Optimization algorithms</topic><topic>Parameter identification</topic><topic>Particle swarm optimization</topic><topic>PSO algorithm</topic><topic>Rotor blades</topic><topic>Rotor dynamic stall</topic><topic>Searching</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Junhao</creatorcontrib><creatorcontrib>Xia, Pinqi</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Junhao</au><au>Xia, Pinqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models</atitle><jtitle>Journal of sound and vibration</jtitle><date>2017-02-17</date><risdate>2017</risdate><volume>389</volume><spage>153</spage><epage>167</epage><pages>153-167</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>The nonlinear dynamic hysteretic models used in nonlinear dynamic analysis contain generally lots of model parameters which need to be identified accurately and effectively. The accuracy and effectiveness of identification depend generally on the complexity of model, number of model parameters and proximity of initial values of the parameters. The particle swarm optimization (PSO) algorithm has the random searching ability and has been widely applied to the parameter identification in the nonlinear dynamic hysteretic models. However, the PSO algorithm may get trapped in the local optimum and appear the premature convergence not to obtain the real optimum results. In this paper, an improved PSO algorithm for identifying parameters of nonlinear dynamic hysteretic models has been presented by defining a fitness function for hysteretic model. The improved PSO algorithm can enhance the global searching ability and avoid to appear the premature convergence of the conventional PSO algorithm, and has been applied to identify the parameters of two nonlinear dynamic hysteretic models which are the Leishman-Beddoes (LB) dynamic stall model of rotor blade and the anelastic displacement fields (ADF) model of elastomeric damper which can be used as the lead-lag damper in rotor. The accuracy and effectiveness of the improved PSO algorithm for identifying parameters of the LB model and the ADF model are validated by comparing the identified results with test results. The investigations have indicated that in order to reduce the influence of randomness caused by using the PSO algorithm on the accuracy of identified parameters, it is an effective method to increase the number of repeated identifications.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2016.11.006</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2017-02, Vol.389, p.153-167
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2055589815
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Anelasticity
Convergence
Elastomeric damper
Elastomers
Fitness
Hysterectomy
Hysteresis
Hysteretic model
Mathematical models
Nonlinear analysis
Nonlinear equations
Optimization algorithms
Parameter identification
Particle swarm optimization
PSO algorithm
Rotor blades
Rotor dynamic stall
Searching
Studies
title An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20PSO%20algorithm%20for%20parameter%20identification%20of%20nonlinear%20dynamic%20hysteretic%20models&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Zhang,%20Junhao&rft.date=2017-02-17&rft.volume=389&rft.spage=153&rft.epage=167&rft.pages=153-167&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2016.11.006&rft_dat=%3Cproquest_cross%3E2055589815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055589815&rft_id=info:pmid/&rft_els_id=S0022460X16306290&rfr_iscdi=true