Phylogenetic annotation and genomic architecture of opsin genes in Crustacea
A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. C...
Gespeichert in:
Veröffentlicht in: | Hydrobiologia 2018-12, Vol.825 (1), p.159-175 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Hydrobiologia |
container_volume | 825 |
creator | Pérez-Moreno, Jorge L. DeLeo, Danielle M. Palero, Ferran Bracken-Grissom, Heather D. |
description | A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. Crustaceans occupy a vast array of habitats and ecological niches, and are thus ideal taxa to investigate the evolution of visual systems. A comparative approach is taken here for efficient identification and classification of opsin genes, photoreceptive pigment proteins involved in color vision, focusing on two crustacean model organisms:
Hyalella azteca
and
Daphnia pulex
. Transcriptomes of both species were assembled de novo to elucidate the diversity and function of expressed opsins within a robust phylogenetic context. For this purpose, we developed a modified version of the Phylogenetically Informed Annotation tool’s pipeline to filter and identify visual genes from transcriptomes in a scalable and efficient manner. In addition, reference genomes of these species were used to validate our pipeline while characterizing the genomic architecture of the opsin genes. Next-generation sequencing and phylogenetics provide future venues for the study of sensory systems, adaptation, and evolution in model and nonmodel organisms. |
doi_str_mv | 10.1007/s10750-018-3678-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055364034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2055364034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e2ba55a586019cd2fa1dfd9c55f486acc7a4c4fb6c34b0e8189a3766e88322e23</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6AuwHX0Twmr6UUXzCgC12HNJO0U9qkJplF_94MI7hydQ_ndeEAcIvRPUZIPGSMBEMQYQkpFxKqM7DATFDIMBbnYIEmRWImL8FVzjtUM4qgBeg-tqd93LjgymAbE0IspgwxVNg3lY6HiU52OxRny5hcE30Tj3kIk-pyU8EqjbkY68w1uPBmn93N712Cr-enz9Ur7N5f3laPHbSUqQIdWRvGDJMcYWV74g3ufa8sY76V3FgrTGtbv-aWtmvkJJbKUMG5k5IS4ghdgru595ji9-hy0bs4plBfaoIYo7xFtK0uPLtsijkn5_UxDQeTThojPY2m59F0nUZPo2lVM2TO5OoNG5f-mv8P_QCsHW-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055364034</pqid></control><display><type>article</type><title>Phylogenetic annotation and genomic architecture of opsin genes in Crustacea</title><source>SpringerLink Journals</source><creator>Pérez-Moreno, Jorge L. ; DeLeo, Danielle M. ; Palero, Ferran ; Bracken-Grissom, Heather D.</creator><creatorcontrib>Pérez-Moreno, Jorge L. ; DeLeo, Danielle M. ; Palero, Ferran ; Bracken-Grissom, Heather D.</creatorcontrib><description>A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. Crustaceans occupy a vast array of habitats and ecological niches, and are thus ideal taxa to investigate the evolution of visual systems. A comparative approach is taken here for efficient identification and classification of opsin genes, photoreceptive pigment proteins involved in color vision, focusing on two crustacean model organisms:
Hyalella azteca
and
Daphnia pulex
. Transcriptomes of both species were assembled de novo to elucidate the diversity and function of expressed opsins within a robust phylogenetic context. For this purpose, we developed a modified version of the Phylogenetically Informed Annotation tool’s pipeline to filter and identify visual genes from transcriptomes in a scalable and efficient manner. In addition, reference genomes of these species were used to validate our pipeline while characterizing the genomic architecture of the opsin genes. Next-generation sequencing and phylogenetics provide future venues for the study of sensory systems, adaptation, and evolution in model and nonmodel organisms.</description><identifier>ISSN: 0018-8158</identifier><identifier>EISSN: 1573-5117</identifier><identifier>DOI: 10.1007/s10750-018-3678-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Adaptive systems ; Annotations ; Aquatic crustaceans ; Architecture ; Biodiversity ; Biological evolution ; Biology ; Biomedical and Life Sciences ; Color vision ; Colour ; Crustacean Genomics ; Crustaceans ; Ecological conditions ; Ecological distribution ; Ecological effects ; Ecological monitoring ; Ecological niches ; Ecology ; Evolution ; Freshwater & Marine Ecology ; Freshwater crustaceans ; Gene sequencing ; Genes ; Genomes ; Life Sciences ; Niches ; Opsins ; Phylogenetics ; Phylogeny ; Proteins ; Sensory systems ; Submarine pipelines ; Zoology</subject><ispartof>Hydrobiologia, 2018-12, Vol.825 (1), p.159-175</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Hydrobiologia is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-e2ba55a586019cd2fa1dfd9c55f486acc7a4c4fb6c34b0e8189a3766e88322e23</citedby><cites>FETCH-LOGICAL-c359t-e2ba55a586019cd2fa1dfd9c55f486acc7a4c4fb6c34b0e8189a3766e88322e23</cites><orcidid>0000-0002-6969-2928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10750-018-3678-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10750-018-3678-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pérez-Moreno, Jorge L.</creatorcontrib><creatorcontrib>DeLeo, Danielle M.</creatorcontrib><creatorcontrib>Palero, Ferran</creatorcontrib><creatorcontrib>Bracken-Grissom, Heather D.</creatorcontrib><title>Phylogenetic annotation and genomic architecture of opsin genes in Crustacea</title><title>Hydrobiologia</title><addtitle>Hydrobiologia</addtitle><description>A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. Crustaceans occupy a vast array of habitats and ecological niches, and are thus ideal taxa to investigate the evolution of visual systems. A comparative approach is taken here for efficient identification and classification of opsin genes, photoreceptive pigment proteins involved in color vision, focusing on two crustacean model organisms:
Hyalella azteca
and
Daphnia pulex
. Transcriptomes of both species were assembled de novo to elucidate the diversity and function of expressed opsins within a robust phylogenetic context. For this purpose, we developed a modified version of the Phylogenetically Informed Annotation tool’s pipeline to filter and identify visual genes from transcriptomes in a scalable and efficient manner. In addition, reference genomes of these species were used to validate our pipeline while characterizing the genomic architecture of the opsin genes. Next-generation sequencing and phylogenetics provide future venues for the study of sensory systems, adaptation, and evolution in model and nonmodel organisms.</description><subject>Adaptation</subject><subject>Adaptive systems</subject><subject>Annotations</subject><subject>Aquatic crustaceans</subject><subject>Architecture</subject><subject>Biodiversity</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Color vision</subject><subject>Colour</subject><subject>Crustacean Genomics</subject><subject>Crustaceans</subject><subject>Ecological conditions</subject><subject>Ecological distribution</subject><subject>Ecological effects</subject><subject>Ecological monitoring</subject><subject>Ecological niches</subject><subject>Ecology</subject><subject>Evolution</subject><subject>Freshwater & Marine Ecology</subject><subject>Freshwater crustaceans</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>Niches</subject><subject>Opsins</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Sensory systems</subject><subject>Submarine pipelines</subject><subject>Zoology</subject><issn>0018-8158</issn><issn>1573-5117</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6AuwHX0Twmr6UUXzCgC12HNJO0U9qkJplF_94MI7hydQ_ndeEAcIvRPUZIPGSMBEMQYQkpFxKqM7DATFDIMBbnYIEmRWImL8FVzjtUM4qgBeg-tqd93LjgymAbE0IspgwxVNg3lY6HiU52OxRny5hcE30Tj3kIk-pyU8EqjbkY68w1uPBmn93N712Cr-enz9Ur7N5f3laPHbSUqQIdWRvGDJMcYWV74g3ufa8sY76V3FgrTGtbv-aWtmvkJJbKUMG5k5IS4ghdgru595ji9-hy0bs4plBfaoIYo7xFtK0uPLtsijkn5_UxDQeTThojPY2m59F0nUZPo2lVM2TO5OoNG5f-mv8P_QCsHW-0</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Pérez-Moreno, Jorge L.</creator><creator>DeLeo, Danielle M.</creator><creator>Palero, Ferran</creator><creator>Bracken-Grissom, Heather D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QH</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7UA</scope><scope>88A</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6969-2928</orcidid></search><sort><creationdate>20181201</creationdate><title>Phylogenetic annotation and genomic architecture of opsin genes in Crustacea</title><author>Pérez-Moreno, Jorge L. ; DeLeo, Danielle M. ; Palero, Ferran ; Bracken-Grissom, Heather D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e2ba55a586019cd2fa1dfd9c55f486acc7a4c4fb6c34b0e8189a3766e88322e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Adaptive systems</topic><topic>Annotations</topic><topic>Aquatic crustaceans</topic><topic>Architecture</topic><topic>Biodiversity</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Color vision</topic><topic>Colour</topic><topic>Crustacean Genomics</topic><topic>Crustaceans</topic><topic>Ecological conditions</topic><topic>Ecological distribution</topic><topic>Ecological effects</topic><topic>Ecological monitoring</topic><topic>Ecological niches</topic><topic>Ecology</topic><topic>Evolution</topic><topic>Freshwater & Marine Ecology</topic><topic>Freshwater crustaceans</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>Niches</topic><topic>Opsins</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Sensory systems</topic><topic>Submarine pipelines</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Moreno, Jorge L.</creatorcontrib><creatorcontrib>DeLeo, Danielle M.</creatorcontrib><creatorcontrib>Palero, Ferran</creatorcontrib><creatorcontrib>Bracken-Grissom, Heather D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Biology Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><jtitle>Hydrobiologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Moreno, Jorge L.</au><au>DeLeo, Danielle M.</au><au>Palero, Ferran</au><au>Bracken-Grissom, Heather D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylogenetic annotation and genomic architecture of opsin genes in Crustacea</atitle><jtitle>Hydrobiologia</jtitle><stitle>Hydrobiologia</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>825</volume><issue>1</issue><spage>159</spage><epage>175</epage><pages>159-175</pages><issn>0018-8158</issn><eissn>1573-5117</eissn><abstract>A major goal of evolutionary biology is to understand the role of adaptive processes on sensory systems. Visual capabilities are strongly influenced by environmental and ecological conditions, and the evolutionary advantages of vision are manifest by its complexity and ubiquity throughout Metazoa. Crustaceans occupy a vast array of habitats and ecological niches, and are thus ideal taxa to investigate the evolution of visual systems. A comparative approach is taken here for efficient identification and classification of opsin genes, photoreceptive pigment proteins involved in color vision, focusing on two crustacean model organisms:
Hyalella azteca
and
Daphnia pulex
. Transcriptomes of both species were assembled de novo to elucidate the diversity and function of expressed opsins within a robust phylogenetic context. For this purpose, we developed a modified version of the Phylogenetically Informed Annotation tool’s pipeline to filter and identify visual genes from transcriptomes in a scalable and efficient manner. In addition, reference genomes of these species were used to validate our pipeline while characterizing the genomic architecture of the opsin genes. Next-generation sequencing and phylogenetics provide future venues for the study of sensory systems, adaptation, and evolution in model and nonmodel organisms.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10750-018-3678-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6969-2928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-8158 |
ispartof | Hydrobiologia, 2018-12, Vol.825 (1), p.159-175 |
issn | 0018-8158 1573-5117 |
language | eng |
recordid | cdi_proquest_journals_2055364034 |
source | SpringerLink Journals |
subjects | Adaptation Adaptive systems Annotations Aquatic crustaceans Architecture Biodiversity Biological evolution Biology Biomedical and Life Sciences Color vision Colour Crustacean Genomics Crustaceans Ecological conditions Ecological distribution Ecological effects Ecological monitoring Ecological niches Ecology Evolution Freshwater & Marine Ecology Freshwater crustaceans Gene sequencing Genes Genomes Life Sciences Niches Opsins Phylogenetics Phylogeny Proteins Sensory systems Submarine pipelines Zoology |
title | Phylogenetic annotation and genomic architecture of opsin genes in Crustacea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylogenetic%20annotation%20and%20genomic%20architecture%20of%20opsin%20genes%20in%20Crustacea&rft.jtitle=Hydrobiologia&rft.au=P%C3%A9rez-Moreno,%20Jorge%20L.&rft.date=2018-12-01&rft.volume=825&rft.issue=1&rft.spage=159&rft.epage=175&rft.pages=159-175&rft.issn=0018-8158&rft.eissn=1573-5117&rft_id=info:doi/10.1007/s10750-018-3678-9&rft_dat=%3Cproquest_cross%3E2055364034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055364034&rft_id=info:pmid/&rfr_iscdi=true |