A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers

•A data-driven prognostic algorithm for the RUL estimation of a product is proposed.•It is based on the exploitation of run-to-failure data of fleet of products.•Sub-fleets of products with similar degradation profile are identified.•The sub-fleet identification is based on degradation rate statisti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2017-10, Vol.108, p.163-170
Hauptverfasser: Leone, Giacomo, Cristaldi, Loredana, Turrin, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue
container_start_page 163
container_title Measurement : journal of the International Measurement Confederation
container_volume 108
creator Leone, Giacomo
Cristaldi, Loredana
Turrin, Simone
description •A data-driven prognostic algorithm for the RUL estimation of a product is proposed.•It is based on the exploitation of run-to-failure data of fleet of products.•Sub-fleets of products with similar degradation profile are identified.•The sub-fleet identification is based on degradation rate statistical similarity.•Better prognostic performances than distance-based approaches have been achieved. In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.
doi_str_mv 10.1016/j.measurement.2017.02.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055204902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224117301100</els_id><sourcerecordid>2055204902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-716b0a0e89ea5b5da96fe228e6050bc281cf066ba45b72d248caf804b7d4c19b3</originalsourceid><addsrcrecordid>eNqNkEFv2zAMhYWhA5Zm-w8aerZHybZs9xYE7VYgQC8dsJtASfQmL7FTSQ6Qfz8F6WHHnh5IfiTxHmNfBZQChPo2lgfCuAQ60JRKCaItQZZZPrCV6NqqqIX8dcNWIFVVSFmLT-w2xhEAVNWrFTtuuMOEhQv-RBM_hvn3NMfkLcdjLtD-4QYjOT5PPCZM_jLDPY_-4PcYfDrf8810gfe5n3zG0sz95JaYgs-g9cEuPnETCP9SiJ_ZxwH3kb686Zr9fHx42f4ods_fn7abXWGrvk1FK5QBBOp6wsY0Dns1kJQdKWjAWNkJO4BSBuvGtNLJurM4dFCb1tVW9KZas7vr3ezidaGY9DgvYcovtYSmkVD3IDPVXykb5hgDDfoY_AHDWQvQl4D1qP8LWF8C1iB1lry7ve5StnHyFHS0niZLzgeySbvZv-PKPxl2jSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055204902</pqid></control><display><type>article</type><title>A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers</title><source>Elsevier ScienceDirect Journals</source><creator>Leone, Giacomo ; Cristaldi, Loredana ; Turrin, Simone</creator><creatorcontrib>Leone, Giacomo ; Cristaldi, Loredana ; Turrin, Simone</creatorcontrib><description>•A data-driven prognostic algorithm for the RUL estimation of a product is proposed.•It is based on the exploitation of run-to-failure data of fleet of products.•Sub-fleets of products with similar degradation profile are identified.•The sub-fleet identification is based on degradation rate statistical similarity.•Better prognostic performances than distance-based approaches have been achieved. In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2017.02.017</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Circuit breakers ; Data-driven ; High voltages ; Industrial circuit breakers ; Medical prognosis ; Predictive maintenance ; Prognostics ; Remaining useful life ; Similarity ; Statistical test ; Sub-fleet ; Useful life</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2017-10, Vol.108, p.163-170</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-716b0a0e89ea5b5da96fe228e6050bc281cf066ba45b72d248caf804b7d4c19b3</citedby><cites>FETCH-LOGICAL-c397t-716b0a0e89ea5b5da96fe228e6050bc281cf066ba45b72d248caf804b7d4c19b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224117301100$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Leone, Giacomo</creatorcontrib><creatorcontrib>Cristaldi, Loredana</creatorcontrib><creatorcontrib>Turrin, Simone</creatorcontrib><title>A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers</title><title>Measurement : journal of the International Measurement Confederation</title><description>•A data-driven prognostic algorithm for the RUL estimation of a product is proposed.•It is based on the exploitation of run-to-failure data of fleet of products.•Sub-fleets of products with similar degradation profile are identified.•The sub-fleet identification is based on degradation rate statistical similarity.•Better prognostic performances than distance-based approaches have been achieved. In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.</description><subject>Algorithms</subject><subject>Circuit breakers</subject><subject>Data-driven</subject><subject>High voltages</subject><subject>Industrial circuit breakers</subject><subject>Medical prognosis</subject><subject>Predictive maintenance</subject><subject>Prognostics</subject><subject>Remaining useful life</subject><subject>Similarity</subject><subject>Statistical test</subject><subject>Sub-fleet</subject><subject>Useful life</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEFv2zAMhYWhA5Zm-w8aerZHybZs9xYE7VYgQC8dsJtASfQmL7FTSQ6Qfz8F6WHHnh5IfiTxHmNfBZQChPo2lgfCuAQ60JRKCaItQZZZPrCV6NqqqIX8dcNWIFVVSFmLT-w2xhEAVNWrFTtuuMOEhQv-RBM_hvn3NMfkLcdjLtD-4QYjOT5PPCZM_jLDPY_-4PcYfDrf8810gfe5n3zG0sz95JaYgs-g9cEuPnETCP9SiJ_ZxwH3kb686Zr9fHx42f4ods_fn7abXWGrvk1FK5QBBOp6wsY0Dns1kJQdKWjAWNkJO4BSBuvGtNLJurM4dFCb1tVW9KZas7vr3ezidaGY9DgvYcovtYSmkVD3IDPVXykb5hgDDfoY_AHDWQvQl4D1qP8LWF8C1iB1lry7ve5StnHyFHS0niZLzgeySbvZv-PKPxl2jSY</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Leone, Giacomo</creator><creator>Cristaldi, Loredana</creator><creator>Turrin, Simone</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171001</creationdate><title>A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers</title><author>Leone, Giacomo ; Cristaldi, Loredana ; Turrin, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-716b0a0e89ea5b5da96fe228e6050bc281cf066ba45b72d248caf804b7d4c19b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Circuit breakers</topic><topic>Data-driven</topic><topic>High voltages</topic><topic>Industrial circuit breakers</topic><topic>Medical prognosis</topic><topic>Predictive maintenance</topic><topic>Prognostics</topic><topic>Remaining useful life</topic><topic>Similarity</topic><topic>Statistical test</topic><topic>Sub-fleet</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leone, Giacomo</creatorcontrib><creatorcontrib>Cristaldi, Loredana</creatorcontrib><creatorcontrib>Turrin, Simone</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leone, Giacomo</au><au>Cristaldi, Loredana</au><au>Turrin, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>108</volume><spage>163</spage><epage>170</epage><pages>163-170</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•A data-driven prognostic algorithm for the RUL estimation of a product is proposed.•It is based on the exploitation of run-to-failure data of fleet of products.•Sub-fleets of products with similar degradation profile are identified.•The sub-fleet identification is based on degradation rate statistical similarity.•Better prognostic performances than distance-based approaches have been achieved. In this paper, a data-driven prognostic algorithm for the estimation of the Remaining Useful Life (RUL) of a product is proposed. It is based on the acquisition and exploitation of run-to-failure data of homogeneous products, in the followings referred as fleet of products. The algorithm is able to detect the set of products (sub-fleet of products) showing highest degradation pattern similarity with the one under study and exploits the related monitoring data for a reliable prediction of the RUL. In particular, a novel methodology for the sub-fleet identification is presented and compared with other solution found in literature. The results obtained for a real application case as Medium and High Voltage Circuit Breaker, have shown a high prognostic power for the algorithm, which therefore represents a potential tool for an effective Predictive Maintenance (PdM) strategy.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2017.02.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2017-10, Vol.108, p.163-170
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2055204902
source Elsevier ScienceDirect Journals
subjects Algorithms
Circuit breakers
Data-driven
High voltages
Industrial circuit breakers
Medical prognosis
Predictive maintenance
Prognostics
Remaining useful life
Similarity
Statistical test
Sub-fleet
Useful life
title A data-driven prognostic approach based on statistical similarity: An application to industrial circuit breakers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20prognostic%20approach%20based%20on%20statistical%20similarity:%20An%20application%20to%20industrial%20circuit%20breakers&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Leone,%20Giacomo&rft.date=2017-10-01&rft.volume=108&rft.spage=163&rft.epage=170&rft.pages=163-170&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2017.02.017&rft_dat=%3Cproquest_cross%3E2055204902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055204902&rft_id=info:pmid/&rft_els_id=S0263224117301100&rfr_iscdi=true