Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method

•We present a machine learning-based Monte Carlo method.•We evaluated the measurement uncertainty in the C-NCAP whiplash test.•The proposed procedure is proves to be accurate and efficient. Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2018-04, Vol.119, p.229-245
Hauptverfasser: Wang, Shenlong, Ding, Xiaohong, Zhu, Daye, Yu, Huijie, Wang, Haihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue
container_start_page 229
container_title Measurement : journal of the International Measurement Confederation
container_volume 119
creator Wang, Shenlong
Ding, Xiaohong
Zhu, Daye
Yu, Huijie
Wang, Haihua
description •We present a machine learning-based Monte Carlo method.•We evaluated the measurement uncertainty in the C-NCAP whiplash test.•The proposed procedure is proves to be accurate and efficient. Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reliability of complex physical systems in the absence of adequate amount of experimental data. This paper presents a quantification of the measurement uncertainty in whiplash test models. We researched the analysis techniques of uncertainty for the complex nonlinear systems, as well as the advantages and disadvantages of the proposed methodology. By introducing the finite element analysis, we verified the consistency between the whiplash test, the calibration test and the simulation results of them. We also studied the influential factors and their probability density functions and presented the sensitivity analysis of whiplash test model. Based on the Latin hypercube sampling, we utilized the back propagation neural network (BPNN) and the least squares support vector machine (LS-SVM) to establish the mathematical models. Furthermore, the accuracies of two models are validated. Comparing with the results acquired by the guidance of uncertainty measurement and the Bayesian method, we demonstrate that the LS-SVM-based Monte Carlo method is the most appropriate technique for the evaluation of whiplash test uncertainty.
doi_str_mv 10.1016/j.measurement.2018.01.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2055201391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224118300782</els_id><sourcerecordid>2055201391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8d1208b5294c6ae4ef656b21b6ad58ed4f8d078e5ef48be4a77dda305c975e443</originalsourceid><addsrcrecordid>eNqNkM1u1DAUhS0EEtPCOxixTrAd20mWaARtpVbdFImddRPfaDwkdrCdqbrj0XE1SO2S1dmcH52PkE-c1Zxx_eVYLwhpi7igz7VgvKsZr5lWb8iOd21TSS5-viU7JnRTCSH5e3KR0pExppte78ifu5c43fyIMYPz-YniCeYNsgueOk8fD26dIR1oxpTpEizO9OSAetwizEXyY4i_KHhL07auIWZ6wjGHSBcYD85jNUBCS--Cz0j3EOdAF8yHYD-QdxPMCT_-00vy4_u3h_11dXt_dbP_eluNjexz1VkuWDco0ctRA0qctNKD4IMGqzq0cuosaztUOMluQAltay00TI19q1DK5pJ8PveuMfzeygtzDFv0ZdIIplQh1_S8uPqza4whpYiTWaNbID4ZzswzcHM0r4CbZ-CGcVOAl-z-nMVy4-QwmjQ6LEiti4WFscH9R8tfFMuTlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2055201391</pqid></control><display><type>article</type><title>Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Shenlong ; Ding, Xiaohong ; Zhu, Daye ; Yu, Huijie ; Wang, Haihua</creator><creatorcontrib>Wang, Shenlong ; Ding, Xiaohong ; Zhu, Daye ; Yu, Huijie ; Wang, Haihua</creatorcontrib><description>•We present a machine learning-based Monte Carlo method.•We evaluated the measurement uncertainty in the C-NCAP whiplash test.•The proposed procedure is proves to be accurate and efficient. Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reliability of complex physical systems in the absence of adequate amount of experimental data. This paper presents a quantification of the measurement uncertainty in whiplash test models. We researched the analysis techniques of uncertainty for the complex nonlinear systems, as well as the advantages and disadvantages of the proposed methodology. By introducing the finite element analysis, we verified the consistency between the whiplash test, the calibration test and the simulation results of them. We also studied the influential factors and their probability density functions and presented the sensitivity analysis of whiplash test model. Based on the Latin hypercube sampling, we utilized the back propagation neural network (BPNN) and the least squares support vector machine (LS-SVM) to establish the mathematical models. Furthermore, the accuracies of two models are validated. Comparing with the results acquired by the guidance of uncertainty measurement and the Bayesian method, we demonstrate that the LS-SVM-based Monte Carlo method is the most appropriate technique for the evaluation of whiplash test uncertainty.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2018.01.065</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Artificial neural networks ; Back propagation networks ; Back propagation neural network ; Bayesian analysis ; Computer simulation ; Finite element method ; Hypercubes ; Latin hypercube sampling ; Least squares support vector machine ; Mathematical analysis ; Measurement uncertainty evaluation ; Model accuracy ; Model testing ; Monte Carlo method ; Monte Carlo simulation ; Neural networks ; Nonlinear systems ; Probability density functions ; Reliability analysis ; Sensitivity analysis ; Studies ; Support vector machines ; Uncertainty analysis ; Whiplash injuries ; Whiplash test</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2018-04, Vol.119, p.229-245</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8d1208b5294c6ae4ef656b21b6ad58ed4f8d078e5ef48be4a77dda305c975e443</citedby><cites>FETCH-LOGICAL-c349t-8d1208b5294c6ae4ef656b21b6ad58ed4f8d078e5ef48be4a77dda305c975e443</cites><orcidid>0000-0001-6670-4412</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263224118300782$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Ding, Xiaohong</creatorcontrib><creatorcontrib>Zhu, Daye</creatorcontrib><creatorcontrib>Yu, Huijie</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><title>Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method</title><title>Measurement : journal of the International Measurement Confederation</title><description>•We present a machine learning-based Monte Carlo method.•We evaluated the measurement uncertainty in the C-NCAP whiplash test.•The proposed procedure is proves to be accurate and efficient. Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reliability of complex physical systems in the absence of adequate amount of experimental data. This paper presents a quantification of the measurement uncertainty in whiplash test models. We researched the analysis techniques of uncertainty for the complex nonlinear systems, as well as the advantages and disadvantages of the proposed methodology. By introducing the finite element analysis, we verified the consistency between the whiplash test, the calibration test and the simulation results of them. We also studied the influential factors and their probability density functions and presented the sensitivity analysis of whiplash test model. Based on the Latin hypercube sampling, we utilized the back propagation neural network (BPNN) and the least squares support vector machine (LS-SVM) to establish the mathematical models. Furthermore, the accuracies of two models are validated. Comparing with the results acquired by the guidance of uncertainty measurement and the Bayesian method, we demonstrate that the LS-SVM-based Monte Carlo method is the most appropriate technique for the evaluation of whiplash test uncertainty.</description><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Back propagation neural network</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Least squares support vector machine</subject><subject>Mathematical analysis</subject><subject>Measurement uncertainty evaluation</subject><subject>Model accuracy</subject><subject>Model testing</subject><subject>Monte Carlo method</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Probability density functions</subject><subject>Reliability analysis</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Uncertainty analysis</subject><subject>Whiplash injuries</subject><subject>Whiplash test</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkM1u1DAUhS0EEtPCOxixTrAd20mWaARtpVbdFImddRPfaDwkdrCdqbrj0XE1SO2S1dmcH52PkE-c1Zxx_eVYLwhpi7igz7VgvKsZr5lWb8iOd21TSS5-viU7JnRTCSH5e3KR0pExppte78ifu5c43fyIMYPz-YniCeYNsgueOk8fD26dIR1oxpTpEizO9OSAetwizEXyY4i_KHhL07auIWZ6wjGHSBcYD85jNUBCS--Cz0j3EOdAF8yHYD-QdxPMCT_-00vy4_u3h_11dXt_dbP_eluNjexz1VkuWDco0ctRA0qctNKD4IMGqzq0cuosaztUOMluQAltay00TI19q1DK5pJ8PveuMfzeygtzDFv0ZdIIplQh1_S8uPqza4whpYiTWaNbID4ZzswzcHM0r4CbZ-CGcVOAl-z-nMVy4-QwmjQ6LEiti4WFscH9R8tfFMuTlA</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Wang, Shenlong</creator><creator>Ding, Xiaohong</creator><creator>Zhu, Daye</creator><creator>Yu, Huijie</creator><creator>Wang, Haihua</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6670-4412</orcidid></search><sort><creationdate>201804</creationdate><title>Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method</title><author>Wang, Shenlong ; Ding, Xiaohong ; Zhu, Daye ; Yu, Huijie ; Wang, Haihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8d1208b5294c6ae4ef656b21b6ad58ed4f8d078e5ef48be4a77dda305c975e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Back propagation neural network</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Least squares support vector machine</topic><topic>Mathematical analysis</topic><topic>Measurement uncertainty evaluation</topic><topic>Model accuracy</topic><topic>Model testing</topic><topic>Monte Carlo method</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Probability density functions</topic><topic>Reliability analysis</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Uncertainty analysis</topic><topic>Whiplash injuries</topic><topic>Whiplash test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shenlong</creatorcontrib><creatorcontrib>Ding, Xiaohong</creatorcontrib><creatorcontrib>Zhu, Daye</creatorcontrib><creatorcontrib>Yu, Huijie</creatorcontrib><creatorcontrib>Wang, Haihua</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shenlong</au><au>Ding, Xiaohong</au><au>Zhu, Daye</au><au>Yu, Huijie</au><au>Wang, Haihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2018-04</date><risdate>2018</risdate><volume>119</volume><spage>229</spage><epage>245</epage><pages>229-245</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•We present a machine learning-based Monte Carlo method.•We evaluated the measurement uncertainty in the C-NCAP whiplash test.•The proposed procedure is proves to be accurate and efficient. Uncertainty evaluation is playing an increasingly important role in assessing the performance, safety and reliability of complex physical systems in the absence of adequate amount of experimental data. This paper presents a quantification of the measurement uncertainty in whiplash test models. We researched the analysis techniques of uncertainty for the complex nonlinear systems, as well as the advantages and disadvantages of the proposed methodology. By introducing the finite element analysis, we verified the consistency between the whiplash test, the calibration test and the simulation results of them. We also studied the influential factors and their probability density functions and presented the sensitivity analysis of whiplash test model. Based on the Latin hypercube sampling, we utilized the back propagation neural network (BPNN) and the least squares support vector machine (LS-SVM) to establish the mathematical models. Furthermore, the accuracies of two models are validated. Comparing with the results acquired by the guidance of uncertainty measurement and the Bayesian method, we demonstrate that the LS-SVM-based Monte Carlo method is the most appropriate technique for the evaluation of whiplash test uncertainty.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2018.01.065</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6670-4412</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2018-04, Vol.119, p.229-245
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2055201391
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Back propagation networks
Back propagation neural network
Bayesian analysis
Computer simulation
Finite element method
Hypercubes
Latin hypercube sampling
Least squares support vector machine
Mathematical analysis
Measurement uncertainty evaluation
Model accuracy
Model testing
Monte Carlo method
Monte Carlo simulation
Neural networks
Nonlinear systems
Probability density functions
Reliability analysis
Sensitivity analysis
Studies
Support vector machines
Uncertainty analysis
Whiplash injuries
Whiplash test
title Measurement uncertainty evaluation in whiplash test model via neural network and support vector machine-based Monte Carlo method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20uncertainty%20evaluation%20in%20whiplash%20test%20model%20via%20neural%20network%20and%20support%20vector%20machine-based%20Monte%20Carlo%20method&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Wang,%20Shenlong&rft.date=2018-04&rft.volume=119&rft.spage=229&rft.epage=245&rft.pages=229-245&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2018.01.065&rft_dat=%3Cproquest_cross%3E2055201391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2055201391&rft_id=info:pmid/&rft_els_id=S0263224118300782&rfr_iscdi=true