Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study
The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2018-08, Vol.32 (8), p.2293-2308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2308 |
---|---|
container_issue | 8 |
container_start_page | 2293 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 32 |
creator | Hamidi, Ali Farnham, David J. Khanbilvardi, Reza |
description | The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information. |
doi_str_mv | 10.1007/s00477-018-1563-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2054496842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2054496842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-457180342ef3b7e28e3ee25d2584d4f0cbb3668aa5e0c4cadd57c17417108253</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEhX0B7BZYg74M3HYUMWXVMFSBibLcS6VIXWKL6HKv8dVEUwsdzc87yvdk2UXjF4xSstrpFSWZU6ZzpkqRK6PshmTosgFV9Xx7y3paTZH9HXKKFFVjM6yr9fgIA7Wh2EiNthuQo-kb8kYaxsIwg4iwQkH2JARfVgT3NrB246g34xdOvuwx6NtbEzTh9Z2HWk9dA3ekGfYkbc-fpCFT_3OIhAcxmY6z04ShzD_2WfZ6v5utXjMly8PT4vbZe6EqoZcqpJpKiSHVtQlcA0CgKuGKy0b2VJX16IotLUKqJPONo0qHSslKxnVXImz7PJQu4395wg4mPd-jOlLNJwqKatCS54odqBc7BEjtGYb_cbGyTBq9oLNQbBJgs1esNEpww8ZTGxYQ_xr_j_0DQBjfwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054496842</pqid></control><display><type>article</type><title>Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hamidi, Ali ; Farnham, David J. ; Khanbilvardi, Reza</creator><creatorcontrib>Hamidi, Ali ; Farnham, David J. ; Khanbilvardi, Reza</creatorcontrib><description>The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-018-1563-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Case studies ; Chemistry and Earth Sciences ; Combined sewer overflows ; Computational Intelligence ; Computer Science ; Computer simulation ; Dependence ; Earth and Environmental Science ; Earth Sciences ; Environment ; Extreme weather ; Green infrastructure ; Hydrologic models ; Hydrology ; Information systems ; Infrastructure ; Math. Appl. in Environmental Science ; Monte Carlo simulation ; Natural resources ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Radar ; Radar data ; Rainfall ; Resource conservation ; Runoff ; Sewer systems ; Spatial distribution ; Statistics for Engineering ; Storm runoff ; Stormwater ; Stormwater management ; Uncertainty analysis ; Urban areas ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2018-08, Vol.32 (8), p.2293-2308</ispartof><rights>The Author(s) 2018</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-457180342ef3b7e28e3ee25d2584d4f0cbb3668aa5e0c4cadd57c17417108253</citedby><cites>FETCH-LOGICAL-c359t-457180342ef3b7e28e3ee25d2584d4f0cbb3668aa5e0c4cadd57c17417108253</cites><orcidid>0000-0001-6235-0303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-018-1563-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-018-1563-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Hamidi, Ali</creatorcontrib><creatorcontrib>Farnham, David J.</creatorcontrib><creatorcontrib>Khanbilvardi, Reza</creatorcontrib><title>Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.</description><subject>Aquatic Pollution</subject><subject>Case studies</subject><subject>Chemistry and Earth Sciences</subject><subject>Combined sewer overflows</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Dependence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Extreme weather</subject><subject>Green infrastructure</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Information systems</subject><subject>Infrastructure</subject><subject>Math. Appl. in Environmental Science</subject><subject>Monte Carlo simulation</subject><subject>Natural resources</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Radar</subject><subject>Radar data</subject><subject>Rainfall</subject><subject>Resource conservation</subject><subject>Runoff</subject><subject>Sewer systems</subject><subject>Spatial distribution</subject><subject>Statistics for Engineering</subject><subject>Storm runoff</subject><subject>Stormwater</subject><subject>Stormwater management</subject><subject>Uncertainty analysis</subject><subject>Urban areas</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhiMEEhX0B7BZYg74M3HYUMWXVMFSBibLcS6VIXWKL6HKv8dVEUwsdzc87yvdk2UXjF4xSstrpFSWZU6ZzpkqRK6PshmTosgFV9Xx7y3paTZH9HXKKFFVjM6yr9fgIA7Wh2EiNthuQo-kb8kYaxsIwg4iwQkH2JARfVgT3NrB246g34xdOvuwx6NtbEzTh9Z2HWk9dA3ekGfYkbc-fpCFT_3OIhAcxmY6z04ShzD_2WfZ6v5utXjMly8PT4vbZe6EqoZcqpJpKiSHVtQlcA0CgKuGKy0b2VJX16IotLUKqJPONo0qHSslKxnVXImz7PJQu4395wg4mPd-jOlLNJwqKatCS54odqBc7BEjtGYb_cbGyTBq9oLNQbBJgs1esNEpww8ZTGxYQ_xr_j_0DQBjfwQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hamidi, Ali</creator><creator>Farnham, David J.</creator><creator>Khanbilvardi, Reza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6235-0303</orcidid></search><sort><creationdate>20180801</creationdate><title>Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study</title><author>Hamidi, Ali ; Farnham, David J. ; Khanbilvardi, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-457180342ef3b7e28e3ee25d2584d4f0cbb3668aa5e0c4cadd57c17417108253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Case studies</topic><topic>Chemistry and Earth Sciences</topic><topic>Combined sewer overflows</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Dependence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Extreme weather</topic><topic>Green infrastructure</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Information systems</topic><topic>Infrastructure</topic><topic>Math. Appl. in Environmental Science</topic><topic>Monte Carlo simulation</topic><topic>Natural resources</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Radar</topic><topic>Radar data</topic><topic>Rainfall</topic><topic>Resource conservation</topic><topic>Runoff</topic><topic>Sewer systems</topic><topic>Spatial distribution</topic><topic>Statistics for Engineering</topic><topic>Storm runoff</topic><topic>Stormwater</topic><topic>Stormwater management</topic><topic>Uncertainty analysis</topic><topic>Urban areas</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamidi, Ali</creatorcontrib><creatorcontrib>Farnham, David J.</creatorcontrib><creatorcontrib>Khanbilvardi, Reza</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamidi, Ali</au><au>Farnham, David J.</au><au>Khanbilvardi, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>32</volume><issue>8</issue><spage>2293</spage><epage>2308</epage><pages>2293-2308</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Conservation Service’s approach. New York City is selected as a case study and the results highlight the importance of preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not rely on extensive sewer system information.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-018-1563-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6235-0303</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2018-08, Vol.32 (8), p.2293-2308 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_2054496842 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Case studies Chemistry and Earth Sciences Combined sewer overflows Computational Intelligence Computer Science Computer simulation Dependence Earth and Environmental Science Earth Sciences Environment Extreme weather Green infrastructure Hydrologic models Hydrology Information systems Infrastructure Math. Appl. in Environmental Science Monte Carlo simulation Natural resources Original Paper Physics Probability Theory and Stochastic Processes Radar Radar data Rainfall Resource conservation Runoff Sewer systems Spatial distribution Statistics for Engineering Storm runoff Stormwater Stormwater management Uncertainty analysis Urban areas Waste Water Technology Water Management Water Pollution Control |
title | Uncertainty analysis of urban sewer system using spatial simulation of radar rainfall fields: New York City case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20analysis%20of%20urban%20sewer%20system%20using%20spatial%20simulation%20of%20radar%20rainfall%20fields:%20New%20York%20City%20case%20study&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Hamidi,%20Ali&rft.date=2018-08-01&rft.volume=32&rft.issue=8&rft.spage=2293&rft.epage=2308&rft.pages=2293-2308&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-018-1563-8&rft_dat=%3Cproquest_cross%3E2054496842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054496842&rft_id=info:pmid/&rfr_iscdi=true |