Mean projection and section radii of convex bodies
We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i ≤ n , averaged over the Grassmannian manifold, and with respect to th...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2018-06, Vol.155 (1), p.89-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Acta mathematica Hungarica |
container_volume | 155 |
creator | Abardia-Evéquoz, J. Hernández Cifre, M. A. Saorín Gómez, E. |
description | We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an
i
-dimensional subspace, or the
i
-dimensional section, 1 ≤
i
≤
n
, averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals. |
doi_str_mv | 10.1007/s10474-018-0801-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2054141065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2054141065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC5-hMPpujLOoKK170HNJ2Kl20WZOu6L-3Sxc8eZo5vM87w8PYJcI1AtibjKCs4oAVhwqQyyNWoK4qLowUx6wAIQ3XwqlTdpbzBgC0BFUw8URhKLcpbqgZ-ziUYWjLfNhTaPu-jF3ZxOGLvss6tj3lc3bShfdMF4e5YK_3dy_LFV8_Pzwub9e8kWhGTsEJIR0GMM61mgJW2pIibJ0ksroLQMaK4GoNVJvgGsS6xQ6k1NpaIxfsau6dvvvcUR79Ju7SMJ30ArRChWD0lMI51aSYc6LOb1P_EdKPR_B7NX5W4yc1fq_Gy4kRM5On7PBG6a_5f-gXXXhklA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054141065</pqid></control><display><type>article</type><title>Mean projection and section radii of convex bodies</title><source>SpringerNature Journals</source><creator>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</creator><creatorcontrib>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</creatorcontrib><description>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an
i
-dimensional subspace, or the
i
-dimensional section, 1 ≤
i
≤
n
, averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-018-0801-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Functionals ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2018-06, Vol.155 (1), p.89-103</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</citedby><cites>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-018-0801-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-018-0801-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abardia-Evéquoz, J.</creatorcontrib><creatorcontrib>Hernández Cifre, M. A.</creatorcontrib><creatorcontrib>Saorín Gómez, E.</creatorcontrib><title>Mean projection and section radii of convex bodies</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an
i
-dimensional subspace, or the
i
-dimensional section, 1 ≤
i
≤
n
, averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</description><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFd_gLeC5-hMPpujLOoKK170HNJ2Kl20WZOu6L-3Sxc8eZo5vM87w8PYJcI1AtibjKCs4oAVhwqQyyNWoK4qLowUx6wAIQ3XwqlTdpbzBgC0BFUw8URhKLcpbqgZ-ziUYWjLfNhTaPu-jF3ZxOGLvss6tj3lc3bShfdMF4e5YK_3dy_LFV8_Pzwub9e8kWhGTsEJIR0GMM61mgJW2pIibJ0ksroLQMaK4GoNVJvgGsS6xQ6k1NpaIxfsau6dvvvcUR79Ju7SMJ30ArRChWD0lMI51aSYc6LOb1P_EdKPR_B7NX5W4yc1fq_Gy4kRM5On7PBG6a_5f-gXXXhklA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Abardia-Evéquoz, J.</creator><creator>Hernández Cifre, M. A.</creator><creator>Saorín Gómez, E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Mean projection and section radii of convex bodies</title><author>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abardia-Evéquoz, J.</creatorcontrib><creatorcontrib>Hernández Cifre, M. A.</creatorcontrib><creatorcontrib>Saorín Gómez, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abardia-Evéquoz, J.</au><au>Hernández Cifre, M. A.</au><au>Saorín Gómez, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean projection and section radii of convex bodies</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>155</volume><issue>1</issue><spage>89</spage><epage>103</epage><pages>89-103</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an
i
-dimensional subspace, or the
i
-dimensional section, 1 ≤
i
≤
n
, averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-018-0801-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2018-06, Vol.155 (1), p.89-103 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_proquest_journals_2054141065 |
source | SpringerNature Journals |
subjects | Functionals Mathematics Mathematics and Statistics |
title | Mean projection and section radii of convex bodies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20projection%20and%20section%20radii%20of%20convex%20bodies&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Abardia-Ev%C3%A9quoz,%20J.&rft.date=2018-06-01&rft.volume=155&rft.issue=1&rft.spage=89&rft.epage=103&rft.pages=89-103&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-018-0801-3&rft_dat=%3Cproquest_cross%3E2054141065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054141065&rft_id=info:pmid/&rfr_iscdi=true |