Mean projection and section radii of convex bodies

We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i  ≤ n , averaged over the Grassmannian manifold, and with respect to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2018-06, Vol.155 (1), p.89-103
Hauptverfasser: Abardia-Evéquoz, J., Hernández Cifre, M. A., Saorín Gómez, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 1
container_start_page 89
container_title Acta mathematica Hungarica
container_volume 155
creator Abardia-Evéquoz, J.
Hernández Cifre, M. A.
Saorín Gómez, E.
description We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i  ≤ n , averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.
doi_str_mv 10.1007/s10474-018-0801-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2054141065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2054141065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFd_gLeC5-hMPpujLOoKK170HNJ2Kl20WZOu6L-3Sxc8eZo5vM87w8PYJcI1AtibjKCs4oAVhwqQyyNWoK4qLowUx6wAIQ3XwqlTdpbzBgC0BFUw8URhKLcpbqgZ-ziUYWjLfNhTaPu-jF3ZxOGLvss6tj3lc3bShfdMF4e5YK_3dy_LFV8_Pzwub9e8kWhGTsEJIR0GMM61mgJW2pIibJ0ksroLQMaK4GoNVJvgGsS6xQ6k1NpaIxfsau6dvvvcUR79Ju7SMJ30ArRChWD0lMI51aSYc6LOb1P_EdKPR_B7NX5W4yc1fq_Gy4kRM5On7PBG6a_5f-gXXXhklA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2054141065</pqid></control><display><type>article</type><title>Mean projection and section radii of convex bodies</title><source>SpringerNature Journals</source><creator>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</creator><creatorcontrib>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</creatorcontrib><description>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i  ≤ n , averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-018-0801-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Functionals ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2018-06, Vol.155 (1), p.89-103</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</citedby><cites>FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-018-0801-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-018-0801-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Abardia-Evéquoz, J.</creatorcontrib><creatorcontrib>Hernández Cifre, M. A.</creatorcontrib><creatorcontrib>Saorín Gómez, E.</creatorcontrib><title>Mean projection and section radii of convex bodies</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i  ≤ n , averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</description><subject>Functionals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMoWFd_gLeC5-hMPpujLOoKK170HNJ2Kl20WZOu6L-3Sxc8eZo5vM87w8PYJcI1AtibjKCs4oAVhwqQyyNWoK4qLowUx6wAIQ3XwqlTdpbzBgC0BFUw8URhKLcpbqgZ-ziUYWjLfNhTaPu-jF3ZxOGLvss6tj3lc3bShfdMF4e5YK_3dy_LFV8_Pzwub9e8kWhGTsEJIR0GMM61mgJW2pIibJ0ksroLQMaK4GoNVJvgGsS6xQ6k1NpaIxfsau6dvvvcUR79Ju7SMJ30ArRChWD0lMI51aSYc6LOb1P_EdKPR_B7NX5W4yc1fq_Gy4kRM5On7PBG6a_5f-gXXXhklA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Abardia-Evéquoz, J.</creator><creator>Hernández Cifre, M. A.</creator><creator>Saorín Gómez, E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Mean projection and section radii of convex bodies</title><author>Abardia-Evéquoz, J. ; Hernández Cifre, M. A. ; Saorín Gómez, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ea922391a0699d5ea1857e4e1d93ee75fa0e672a9b50eb6a9c11bd1f033557763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Functionals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abardia-Evéquoz, J.</creatorcontrib><creatorcontrib>Hernández Cifre, M. A.</creatorcontrib><creatorcontrib>Saorín Gómez, E.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abardia-Evéquoz, J.</au><au>Hernández Cifre, M. A.</au><au>Saorín Gómez, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean projection and section radii of convex bodies</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>155</volume><issue>1</issue><spage>89</spage><epage>103</epage><pages>89-103</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We introduce new series of mean outer and inner radii, which are defined as the outer (respectively, inner) radius of, either the projection of the convex body onto an i -dimensional subspace, or the i -dimensional section, 1 ≤ i  ≤ n , averaged over the Grassmannian manifold, and with respect to the Haar probability measure. We study some properties of these new functionals, establishing inequalities among them, as well as their relation with other measures as the volume or the quermassintegrals.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-018-0801-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0236-5294
ispartof Acta mathematica Hungarica, 2018-06, Vol.155 (1), p.89-103
issn 0236-5294
1588-2632
language eng
recordid cdi_proquest_journals_2054141065
source SpringerNature Journals
subjects Functionals
Mathematics
Mathematics and Statistics
title Mean projection and section radii of convex bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean%20projection%20and%20section%20radii%20of%20convex%20bodies&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Abardia-Ev%C3%A9quoz,%20J.&rft.date=2018-06-01&rft.volume=155&rft.issue=1&rft.spage=89&rft.epage=103&rft.pages=89-103&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-018-0801-3&rft_dat=%3Cproquest_cross%3E2054141065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2054141065&rft_id=info:pmid/&rfr_iscdi=true