Flow Resistance in a Compound Channel with Diverging and Converging Floodplains

AbstractExperiments were performed in the symmetric compound channel with diverging and converging floodplains for different relative flow depths to investigate the resistance characteristics of overbank flow in nonprismatic sections. The effectiveness of Manning’s n, Darcy-Weisbach’s f and Chezy’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2018-08, Vol.144 (8)
Hauptverfasser: Das, Bhabani Shankar, Khatua, Kishanjit Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractExperiments were performed in the symmetric compound channel with diverging and converging floodplains for different relative flow depths to investigate the resistance characteristics of overbank flow in nonprismatic sections. The effectiveness of Manning’s n, Darcy-Weisbach’s f and Chezy’s C are analyzed. Manning’s roughness coefficient relies upon the nondimensional parameters like width ratio, aspect ratio, relative flow depth, angles (diverging and converging angles), relative distance, bed slope, Reynolds number, and Froude number. A multivariable regression model has been developed by taking care of the aforementioned geometric and hydraulic parameters to estimate the Manning’s roughness coefficient for nonprismatic compound channels. The nonlinear regression models are developed using pertinent experimental data obtained from laboratory experiments and the data from other researchers on the compound channel with nonprismatic floodplains. The present model gives satisfactory results as compared to other approaches for different experimental channels and field data by providing less error.
ISSN:0733-9429
1943-7900
DOI:10.1061/(ASCE)HY.1943-7900.0001496