Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity

For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2018-05, Vol.54 (5), p.567-577
Hauptverfasser: Borodinova, D. Yu, Kritskov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 5
container_start_page 567
container_title Differential equations
container_volume 54
creator Borodinova, D. Yu
Kritskov, L. V.
description For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n ( x 1 / x 2 ) with some constant γ for all sufficiently small 0 < x 1 < x 2 , we estimate the norms of root functions in the Lebesgue spaces L p ( G ), 1 ≤ p < ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.
doi_str_mv 10.1134/S0012266118050014
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2052883656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A720196887</galeid><sourcerecordid>A720196887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-2aed600f768669e3b4836ec87b4a405e510946df20d7d2eea80dee32d3ec7fda3</originalsourceid><addsrcrecordid>eNp1kc9KAzEQxoMoWKsP4C3geXWS7GbTY_0vCAWr5yVuZtuUNqlJFumL-QK-mKkVPIjMYYZvvt8wzBByyuCcMVFeTAEY51IypqDKdblHBkyCKgQosU8G23ax7R-SoxgXADCqWTUgq5uY7EonjNR3NM2RPnmf6G3v2mS9-1Y1nTgsru0KXcyaXtJpOw-fH8a6GQY6WWPQyQf6btM8m6cpeDejl753RocNnWZbv9TBps0xOej0MuLJTx6Sl9ub56v74nFy93A1fixaAXUquEYjAbpaKilHKF5LJSS2qn4tdQkVVgxGpTQdB1MbjqgVGETBjcC27owWQ3K2m7sO_q3HmJqF70PePDYcKq7yuEpm1_nONdNLbKzrfAq6zWFwZVvvsLNZH9cc2EgqVWeA7YA2-BgDds065OOFTcOg2b6h-fOGzPAdE7N3e6_fVf6HvgDcCIp2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052883656</pqid></control><display><type>article</type><title>Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Borodinova, D. Yu ; Kritskov, L. V.</creator><creatorcontrib>Borodinova, D. Yu ; Kritskov, L. V.</creatorcontrib><description>For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n ( x 1 / x 2 ) with some constant γ for all sufficiently small 0 &lt; x 1 &lt; x 2 , we estimate the norms of root functions in the Lebesgue spaces L p ( G ), 1 ≤ p &lt; ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266118050014</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Difference and Functional Equations ; Differential equations ; Estimates ; Mathematics ; Mathematics and Statistics ; Norms ; Operators (mathematics) ; Ordinary Differential Equations ; Parameter estimation ; Partial Differential Equations</subject><ispartof>Differential equations, 2018-05, Vol.54 (5), p.567-577</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Differential Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-2aed600f768669e3b4836ec87b4a405e510946df20d7d2eea80dee32d3ec7fda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266118050014$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266118050014$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Borodinova, D. Yu</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><title>Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n ( x 1 / x 2 ) with some constant γ for all sufficiently small 0 &lt; x 1 &lt; x 2 , we estimate the norms of root functions in the Lebesgue spaces L p ( G ), 1 ≤ p &lt; ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.</description><subject>Asymptotic methods</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Estimates</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Operators (mathematics)</subject><subject>Ordinary Differential Equations</subject><subject>Parameter estimation</subject><subject>Partial Differential Equations</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc9KAzEQxoMoWKsP4C3geXWS7GbTY_0vCAWr5yVuZtuUNqlJFumL-QK-mKkVPIjMYYZvvt8wzBByyuCcMVFeTAEY51IypqDKdblHBkyCKgQosU8G23ax7R-SoxgXADCqWTUgq5uY7EonjNR3NM2RPnmf6G3v2mS9-1Y1nTgsru0KXcyaXtJpOw-fH8a6GQY6WWPQyQf6btM8m6cpeDejl753RocNnWZbv9TBps0xOej0MuLJTx6Sl9ub56v74nFy93A1fixaAXUquEYjAbpaKilHKF5LJSS2qn4tdQkVVgxGpTQdB1MbjqgVGETBjcC27owWQ3K2m7sO_q3HmJqF70PePDYcKq7yuEpm1_nONdNLbKzrfAq6zWFwZVvvsLNZH9cc2EgqVWeA7YA2-BgDds065OOFTcOg2b6h-fOGzPAdE7N3e6_fVf6HvgDcCIp2</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Borodinova, D. Yu</creator><creator>Kritskov, L. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180501</creationdate><title>Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity</title><author>Borodinova, D. Yu ; Kritskov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-2aed600f768669e3b4836ec87b4a405e510946df20d7d2eea80dee32d3ec7fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Estimates</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Operators (mathematics)</topic><topic>Ordinary Differential Equations</topic><topic>Parameter estimation</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodinova, D. Yu</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodinova, D. Yu</au><au>Kritskov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>54</volume><issue>5</issue><spage>567</spage><epage>577</epage><pages>567-577</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n ( x 1 / x 2 ) with some constant γ for all sufficiently small 0 &lt; x 1 &lt; x 2 , we estimate the norms of root functions in the Lebesgue spaces L p ( G ), 1 ≤ p &lt; ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266118050014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2018-05, Vol.54 (5), p.567-577
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2052883656
source SpringerLink Journals - AutoHoldings
subjects Asymptotic methods
Difference and Functional Equations
Differential equations
Estimates
Mathematics
Mathematics and Statistics
Norms
Operators (mathematics)
Ordinary Differential Equations
Parameter estimation
Partial Differential Equations
title Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20of%20the%20Root%20Functions%20of%20a%20One-Dimensional%20Schr%C3%B6dinger%20Operator%20with%20a%20Strong%20Boundary%20Singularity&rft.jtitle=Differential%20equations&rft.au=Borodinova,%20D.%20Yu&rft.date=2018-05-01&rft.volume=54&rft.issue=5&rft.spage=567&rft.epage=577&rft.pages=567-577&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266118050014&rft_dat=%3Cgale_proqu%3EA720196887%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052883656&rft_id=info:pmid/&rft_galeid=A720196887&rfr_iscdi=true