Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity

For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2018-05, Vol.54 (5), p.567-577
Hauptverfasser: Borodinova, D. Yu, Kritskov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n ( x 1 / x 2 ) with some constant γ for all sufficiently small 0 < x 1 < x 2 , we estimate the norms of root functions in the Lebesgue spaces L p ( G ), 1 ≤ p < ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266118050014