Estimates of the Root Functions of a One-Dimensional Schrödinger Operator with a Strong Boundary Singularity
For any operator defined by the differential operation Lu = − u ″ + q ( x ) u on the interval G = (0, 1) with complex-valued potential q ( x ) locally integrable on G and satisfying the inequalities ∫ x 1 x 2 ζ | ( q ( ζ ) ) | d ζ ≤ l n ( x 1 / x 2 ) and ∫ x 1 x 2 ζ | ( q ( 1 − ζ ) ) | d ζ ≤ γ l n (...
Gespeichert in:
Veröffentlicht in: | Differential equations 2018-05, Vol.54 (5), p.567-577 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any operator defined by the differential operation
Lu
= −
u
″ +
q
(
x
)
u
on the interval
G
= (0, 1) with complex-valued potential
q
(
x
) locally integrable on G and satisfying the inequalities
∫
x
1
x
2
ζ
|
(
q
(
ζ
)
)
|
d
ζ
≤
l
n
(
x
1
/
x
2
)
and
∫
x
1
x
2
ζ
|
(
q
(
1
−
ζ
)
)
|
d
ζ
≤
γ
l
n
(
x
1
/
x
2
)
with some constant γ for all sufficiently small 0 <
x
1
<
x
2
, we estimate the norms of root functions in the Lebesgue spaces
L
p
(
G
), 1 ≤
p
< ∞. We show that for sufficiently small γ these norms satisfy the same estimates asymptotic in the spectral parameter as in the unperturbed case. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266118050014 |