Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information
Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2018-07, Vol.30 (1), p.241-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 1 |
container_start_page | 241 |
container_title | Neural computing & applications |
container_volume | 30 |
creator | Liang, Ru-xia Wang, Jian-qiang Li, Lin |
description | Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach. |
doi_str_mv | 10.1007/s00521-016-2672-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052868273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052868273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8tGl7lMUvULzoOaTNdDdrm9QkFfTkTzfLCp48DcM878zwIHTO6CWjtLqKlJacEcok4bLihB-gBSuEIIKW9SFa0KbIU1mIY3QS45ZSWsi6XKDvp3lIlnTBJghW43Xw84QNdDZa78io36xb4xHSxhvc6ggGe4ety7SBCZwBl3I7zSli3-OY6QHIhx7mTKagJ_jy1ugBO5hT8NFPG9vlQO_DqFM-cYqOej1EOPutS_R6e_OyuiePz3cPq-tH0gkmE6mgl0XPCyPrwmhR1Vq0nWhMwRvO6qYC1gnZ9AxaKnXHhDRtyUzDQULbtFUlluhiv3cK_n2GmNTWz8Hlk4pndbWseSUyxfZUl3-NAXo1BTvq8KkYVTvRai9aZdFqJ1rxnOH7TMysW0P42_x_6Aezq4Pq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052868273</pqid></control><display><type>article</type><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</creator><creatorcontrib>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</creatorcontrib><description>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2672-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2018-07, Vol.30 (1), p.241-260</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</citedby><cites>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2672-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2672-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liang, Ru-xia</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8tGl7lMUvULzoOaTNdDdrm9QkFfTkTzfLCp48DcM878zwIHTO6CWjtLqKlJacEcok4bLihB-gBSuEIIKW9SFa0KbIU1mIY3QS45ZSWsi6XKDvp3lIlnTBJghW43Xw84QNdDZa78io36xb4xHSxhvc6ggGe4ety7SBCZwBl3I7zSli3-OY6QHIhx7mTKagJ_jy1ugBO5hT8NFPG9vlQO_DqFM-cYqOej1EOPutS_R6e_OyuiePz3cPq-tH0gkmE6mgl0XPCyPrwmhR1Vq0nWhMwRvO6qYC1gnZ9AxaKnXHhDRtyUzDQULbtFUlluhiv3cK_n2GmNTWz8Hlk4pndbWseSUyxfZUl3-NAXo1BTvq8KkYVTvRai9aZdFqJ1rxnOH7TMysW0P42_x_6Aezq4Pq</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Liang, Ru-xia</creator><creator>Wang, Jian-qiang</creator><creator>Li, Lin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><author>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ru-xia</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Ru-xia</au><au>Wang, Jian-qiang</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>30</volume><issue>1</issue><spage>241</spage><epage>260</epage><pages>241-260</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2672-2</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2018-07, Vol.30 (1), p.241-260 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2052868273 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Decision making Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
title | Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-criteria%20group%20decision-making%20method%20based%20on%20interdependent%20inputs%20of%20single-valued%20trapezoidal%20neutrosophic%20information&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liang,%20Ru-xia&rft.date=2018-07-01&rft.volume=30&rft.issue=1&rft.spage=241&rft.epage=260&rft.pages=241-260&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2672-2&rft_dat=%3Cproquest_cross%3E2052868273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052868273&rft_id=info:pmid/&rfr_iscdi=true |