Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information

Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2018-07, Vol.30 (1), p.241-260
Hauptverfasser: Liang, Ru-xia, Wang, Jian-qiang, Li, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 1
container_start_page 241
container_title Neural computing & applications
container_volume 30
creator Liang, Ru-xia
Wang, Jian-qiang
Li, Lin
description Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.
doi_str_mv 10.1007/s00521-016-2672-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052868273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052868273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8tGl7lMUvULzoOaTNdDdrm9QkFfTkTzfLCp48DcM878zwIHTO6CWjtLqKlJacEcok4bLihB-gBSuEIIKW9SFa0KbIU1mIY3QS45ZSWsi6XKDvp3lIlnTBJghW43Xw84QNdDZa78io36xb4xHSxhvc6ggGe4ety7SBCZwBl3I7zSli3-OY6QHIhx7mTKagJ_jy1ugBO5hT8NFPG9vlQO_DqFM-cYqOej1EOPutS_R6e_OyuiePz3cPq-tH0gkmE6mgl0XPCyPrwmhR1Vq0nWhMwRvO6qYC1gnZ9AxaKnXHhDRtyUzDQULbtFUlluhiv3cK_n2GmNTWz8Hlk4pndbWseSUyxfZUl3-NAXo1BTvq8KkYVTvRai9aZdFqJ1rxnOH7TMysW0P42_x_6Aezq4Pq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052868273</pqid></control><display><type>article</type><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</creator><creatorcontrib>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</creatorcontrib><description>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2672-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2018-07, Vol.30 (1), p.241-260</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</citedby><cites>FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2672-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2672-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liang, Ru-xia</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8tGl7lMUvULzoOaTNdDdrm9QkFfTkTzfLCp48DcM878zwIHTO6CWjtLqKlJacEcok4bLihB-gBSuEIIKW9SFa0KbIU1mIY3QS45ZSWsi6XKDvp3lIlnTBJghW43Xw84QNdDZa78io36xb4xHSxhvc6ggGe4ety7SBCZwBl3I7zSli3-OY6QHIhx7mTKagJ_jy1ugBO5hT8NFPG9vlQO_DqFM-cYqOej1EOPutS_R6e_OyuiePz3cPq-tH0gkmE6mgl0XPCyPrwmhR1Vq0nWhMwRvO6qYC1gnZ9AxaKnXHhDRtyUzDQULbtFUlluhiv3cK_n2GmNTWz8Hlk4pndbWseSUyxfZUl3-NAXo1BTvq8KkYVTvRai9aZdFqJ1rxnOH7TMysW0P42_x_6Aezq4Pq</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Liang, Ru-xia</creator><creator>Wang, Jian-qiang</creator><creator>Li, Lin</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</title><author>Liang, Ru-xia ; Wang, Jian-qiang ; Li, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7ef64f24d684da378a3bc39d42921897e1c369f1eb06ac136db51d92e6eb9b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Ru-xia</creatorcontrib><creatorcontrib>Wang, Jian-qiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Ru-xia</au><au>Wang, Jian-qiang</au><au>Li, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>30</volume><issue>1</issue><spage>241</spage><epage>260</epage><pages>241-260</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Single-valued trapezoidal neutrosophic numbers (SVTNNs) are very useful tools for describing complex information, because they are able to maintain the completeness of the information and describe it accurately and comprehensively. This paper develops a method based on the single-valued trapezoidal neutrosophic normalized weighted Bonferroni mean (SVTNNWBM) operator to address multi-criteria group decision-making (MCGDM) problems. First, the limitations of existing operations for SVTNNs are discussed, after which improved operations are defined. Second, a new comparison method based on score function is proposed. Then, the entropy-weighted method is established in order to obtain objective expert weights, and the SVTNNWBM operator is proposed based on the new operations of SVTNNs. Furthermore, a single-valued trapezoidal neutrosophic MCGDM method is developed. Finally, a numerical example and comparison analysis are conducted to verify the practicality and effectiveness of the proposed approach.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2672-2</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2018-07, Vol.30 (1), p.241-260
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2052868273
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
title Multi-criteria group decision-making method based on interdependent inputs of single-valued trapezoidal neutrosophic information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-criteria%20group%20decision-making%20method%20based%20on%20interdependent%20inputs%20of%20single-valued%20trapezoidal%20neutrosophic%20information&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liang,%20Ru-xia&rft.date=2018-07-01&rft.volume=30&rft.issue=1&rft.spage=241&rft.epage=260&rft.pages=241-260&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2672-2&rft_dat=%3Cproquest_cross%3E2052868273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052868273&rft_id=info:pmid/&rfr_iscdi=true