Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments
•Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation.•The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradi...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2016-11, Vol.112, p.269-273 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | |
container_start_page | 269 |
container_title | Fusion engineering and design |
container_volume | 112 |
creator | Iwasa, Yuki Yamanoi, Kohei Iwano, Keisuke Empizo, Melvin John F. Arikawa, Yasunobu Fujioka, Shinsuke Sarukura, Nobuhiko Shiraga, Hiroyuki Takagi, Masaru Norimatsu, Takayoshi Azechi, Hiroshi Noborio, Kazuyuki Hara, Masanori Matsuyama, Masao |
description | •Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation.•The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample.•Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption.•Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time.•UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments.
We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6×1011Bqg−1 specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs. |
doi_str_mv | 10.1016/j.fusengdes.2016.09.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052715176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379616305737</els_id><sourcerecordid>2052715176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5298747b88ed6fcff0d4338aca13f612930d3d687e2027b268f58d34002c74223</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVJoZu0v6GCnu2OpLUlH0Nok0Igl81ZaK3RRotXciU51PTPR8uGXgsDA483b2Y-Qr4yaBmw_vuxdUvGcLCYW16FFoYWoPtANkxJ0Ug29FdkAwOHRsih_0Sucz4CMFlrQ_7uki9-OTU2zj4cKIYXE0Y8YSg0OjrHac1lTRiQ7le6TCWZVx8nLHQyGRM1wdKX1aZ4wEDnqp0M9SkZ603xMVAX07uzXnkW8M-MyZ_z82fy0Zkp45f3fkOef_7Y3T00j0_3v-5uH5uRq6E0HR-U3Mq9Umh7NzoHdiuEMqNhwvWMDwKssL2SyIHLPe-V65QVWwA-yi3n4oZ8u-TOKf5eMBd9jEsKdaXm0HHJOib76pIX15hizgmdnuudJq2agT6T1kf9j7Q-k9Yw6Eq6Tt5eJrE-8eox6Tx6rBStTzgWbaP_b8YbjbCOWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052715176</pqid></control><display><type>article</type><title>Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments</title><source>Access via ScienceDirect (Elsevier)</source><creator>Iwasa, Yuki ; Yamanoi, Kohei ; Iwano, Keisuke ; Empizo, Melvin John F. ; Arikawa, Yasunobu ; Fujioka, Shinsuke ; Sarukura, Nobuhiko ; Shiraga, Hiroyuki ; Takagi, Masaru ; Norimatsu, Takayoshi ; Azechi, Hiroshi ; Noborio, Kazuyuki ; Hara, Masanori ; Matsuyama, Masao</creator><creatorcontrib>Iwasa, Yuki ; Yamanoi, Kohei ; Iwano, Keisuke ; Empizo, Melvin John F. ; Arikawa, Yasunobu ; Fujioka, Shinsuke ; Sarukura, Nobuhiko ; Shiraga, Hiroyuki ; Takagi, Masaru ; Norimatsu, Takayoshi ; Azechi, Hiroshi ; Noborio, Kazuyuki ; Hara, Masanori ; Matsuyama, Masao</creatorcontrib><description>•Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation.•The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample.•Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption.•Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time.•UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments.
We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6×1011Bqg−1 specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2016.09.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Doping ; Food irradiation ; Hydrogen ; Hydrogen plasma ; Irradiation ; Laser fusion ; Lasers ; Partial pressure ; Polystyrene ; Polystyrene resins ; Radioactivity ; Safety management ; Tritium ; Ultraviolet lasers ; Wilzbach method</subject><ispartof>Fusion engineering and design, 2016-11, Vol.112, p.269-273</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-5298747b88ed6fcff0d4338aca13f612930d3d687e2027b268f58d34002c74223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fusengdes.2016.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Iwasa, Yuki</creatorcontrib><creatorcontrib>Yamanoi, Kohei</creatorcontrib><creatorcontrib>Iwano, Keisuke</creatorcontrib><creatorcontrib>Empizo, Melvin John F.</creatorcontrib><creatorcontrib>Arikawa, Yasunobu</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><creatorcontrib>Sarukura, Nobuhiko</creatorcontrib><creatorcontrib>Shiraga, Hiroyuki</creatorcontrib><creatorcontrib>Takagi, Masaru</creatorcontrib><creatorcontrib>Norimatsu, Takayoshi</creatorcontrib><creatorcontrib>Azechi, Hiroshi</creatorcontrib><creatorcontrib>Noborio, Kazuyuki</creatorcontrib><creatorcontrib>Hara, Masanori</creatorcontrib><creatorcontrib>Matsuyama, Masao</creatorcontrib><title>Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments</title><title>Fusion engineering and design</title><description>•Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation.•The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample.•Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption.•Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time.•UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments.
We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6×1011Bqg−1 specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs.</description><subject>Doping</subject><subject>Food irradiation</subject><subject>Hydrogen</subject><subject>Hydrogen plasma</subject><subject>Irradiation</subject><subject>Laser fusion</subject><subject>Lasers</subject><subject>Partial pressure</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Radioactivity</subject><subject>Safety management</subject><subject>Tritium</subject><subject>Ultraviolet lasers</subject><subject>Wilzbach method</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVJoZu0v6GCnu2OpLUlH0Nok0Igl81ZaK3RRotXciU51PTPR8uGXgsDA483b2Y-Qr4yaBmw_vuxdUvGcLCYW16FFoYWoPtANkxJ0Ug29FdkAwOHRsih_0Sucz4CMFlrQ_7uki9-OTU2zj4cKIYXE0Y8YSg0OjrHac1lTRiQ7le6TCWZVx8nLHQyGRM1wdKX1aZ4wEDnqp0M9SkZ603xMVAX07uzXnkW8M-MyZ_z82fy0Zkp45f3fkOef_7Y3T00j0_3v-5uH5uRq6E0HR-U3Mq9Umh7NzoHdiuEMqNhwvWMDwKssL2SyIHLPe-V65QVWwA-yi3n4oZ8u-TOKf5eMBd9jEsKdaXm0HHJOib76pIX15hizgmdnuudJq2agT6T1kf9j7Q-k9Yw6Eq6Tt5eJrE-8eox6Tx6rBStTzgWbaP_b8YbjbCOWw</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Iwasa, Yuki</creator><creator>Yamanoi, Kohei</creator><creator>Iwano, Keisuke</creator><creator>Empizo, Melvin John F.</creator><creator>Arikawa, Yasunobu</creator><creator>Fujioka, Shinsuke</creator><creator>Sarukura, Nobuhiko</creator><creator>Shiraga, Hiroyuki</creator><creator>Takagi, Masaru</creator><creator>Norimatsu, Takayoshi</creator><creator>Azechi, Hiroshi</creator><creator>Noborio, Kazuyuki</creator><creator>Hara, Masanori</creator><creator>Matsuyama, Masao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20161115</creationdate><title>Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments</title><author>Iwasa, Yuki ; Yamanoi, Kohei ; Iwano, Keisuke ; Empizo, Melvin John F. ; Arikawa, Yasunobu ; Fujioka, Shinsuke ; Sarukura, Nobuhiko ; Shiraga, Hiroyuki ; Takagi, Masaru ; Norimatsu, Takayoshi ; Azechi, Hiroshi ; Noborio, Kazuyuki ; Hara, Masanori ; Matsuyama, Masao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5298747b88ed6fcff0d4338aca13f612930d3d687e2027b268f58d34002c74223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Doping</topic><topic>Food irradiation</topic><topic>Hydrogen</topic><topic>Hydrogen plasma</topic><topic>Irradiation</topic><topic>Laser fusion</topic><topic>Lasers</topic><topic>Partial pressure</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Radioactivity</topic><topic>Safety management</topic><topic>Tritium</topic><topic>Ultraviolet lasers</topic><topic>Wilzbach method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwasa, Yuki</creatorcontrib><creatorcontrib>Yamanoi, Kohei</creatorcontrib><creatorcontrib>Iwano, Keisuke</creatorcontrib><creatorcontrib>Empizo, Melvin John F.</creatorcontrib><creatorcontrib>Arikawa, Yasunobu</creatorcontrib><creatorcontrib>Fujioka, Shinsuke</creatorcontrib><creatorcontrib>Sarukura, Nobuhiko</creatorcontrib><creatorcontrib>Shiraga, Hiroyuki</creatorcontrib><creatorcontrib>Takagi, Masaru</creatorcontrib><creatorcontrib>Norimatsu, Takayoshi</creatorcontrib><creatorcontrib>Azechi, Hiroshi</creatorcontrib><creatorcontrib>Noborio, Kazuyuki</creatorcontrib><creatorcontrib>Hara, Masanori</creatorcontrib><creatorcontrib>Matsuyama, Masao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwasa, Yuki</au><au>Yamanoi, Kohei</au><au>Iwano, Keisuke</au><au>Empizo, Melvin John F.</au><au>Arikawa, Yasunobu</au><au>Fujioka, Shinsuke</au><au>Sarukura, Nobuhiko</au><au>Shiraga, Hiroyuki</au><au>Takagi, Masaru</au><au>Norimatsu, Takayoshi</au><au>Azechi, Hiroshi</au><au>Noborio, Kazuyuki</au><au>Hara, Masanori</au><au>Matsuyama, Masao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments</atitle><jtitle>Fusion engineering and design</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>112</volume><spage>269</spage><epage>273</epage><pages>269-273</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma irradiation.•The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample.•Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption.•Hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time.•UV laser and plasma irradiations can be utilized to fabricate tritium-doped polystyrene shell targets for future laser fusion experiments.
We investigate the tritium-doping enhancement of polystyrene by ultraviolet (UV) laser and hydrogen plasma irradiation. Tritium-doped polystyrene films are fabricated by the Wilzbach method with UV laser and hydrogen plasma. The 266-nm laser-irradiated, 355-nm laser-irradiated, and hydrogen plasma-irradiated polystyrene films exhibit higher PSL intensities and specific radioactivities than the non-irradiated sample. Tritium doping by UV laser irradiation can be largely affected by the laser wavelength because of polystyrene’s absorption. In addition, UV laser irradiation is more localized and concentrated at the spot of laser irradiation, while hydrogen plasma irradiation results to a more uniform doping concentration even at low partial pressure and short irradiation time. Both UV laser and plasma irradiations can nevertheless be utilized to fabricate tritium-doped polystyrene targets for future laser fusion experiments. With a high doping rate and efficiency, a 1% tritium-doped polystyrene shell target having 7.6×1011Bqg−1 specific radioactivity can be obtained at a short period of time thereby decreasing tritium consumption and safety management costs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2016.09.005</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2016-11, Vol.112, p.269-273 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_proquest_journals_2052715176 |
source | Access via ScienceDirect (Elsevier) |
subjects | Doping Food irradiation Hydrogen Hydrogen plasma Irradiation Laser fusion Lasers Partial pressure Polystyrene Polystyrene resins Radioactivity Safety management Tritium Ultraviolet lasers Wilzbach method |
title | Tritium-doping enhancement of polystyrene by ultraviolet laser and hydrogen plasma irradiation for laser fusion experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tritium-doping%20enhancement%20of%20polystyrene%20by%20ultraviolet%20laser%20and%20hydrogen%20plasma%20irradiation%20for%20laser%20fusion%20experiments&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Iwasa,%20Yuki&rft.date=2016-11-15&rft.volume=112&rft.spage=269&rft.epage=273&rft.pages=269-273&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2016.09.005&rft_dat=%3Cproquest_cross%3E2052715176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052715176&rft_id=info:pmid/&rft_els_id=S0920379616305737&rfr_iscdi=true |