A meta-heuristic for topology optimization using probabilistic learning

Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2018-11, Vol.48 (11), p.4267-4287
Hauptverfasser: Valdez, S. Ivvan, Marroquín, José L., Botello, Salvador, Faurrieta, Noé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4287
container_issue 11
container_start_page 4267
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 48
creator Valdez, S. Ivvan
Marroquín, José L.
Botello, Salvador
Faurrieta, Noé
description Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA), a global optimization meta-heuristic based on probabilistic learning, which requires of neither user initialization, nor a priori information or design bias in the algorithm. We propose a representation and solution mapping which favors feasible structures and requires a, relatively, low dimensionality (some hundreds), the probabilistic model learns from finite element evaluations to generate well-performed structures. The EDA for topology optimization (EDATOP) is compared with an algorithm, in the state of the art, specially designed to address this problem, demonstrating that our approach is useful for solving real-world problems, escapes from local optima, and delivers better solutions than the comparing algorithm which uses problem knowledge, with a payoff on the computational cost.
doi_str_mv 10.1007/s10489-018-1215-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052546369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052546369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6b9daa40ec39b37ce13f35518e16c006ad3901c6ec0d7c0540682b231d40f86f3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeC5-hMk6bNcVl0FRa8KHgLaZquWbpNTdrD-vRmqeDJ08Dw_f8MHyG3CPcIUD5EBF5JClhRzLGgeEYWWJSMllyW52QBMudUCPlxSa5i3AMAY4ALslllBztq-mmn4OLoTNb6kI1-8J3fHTM_jO7gvvXofJ9N0fW7bAi-1rXrZrqzOvRpfU0uWt1Fe_M7l-T96fFt_Uy3r5uX9WpLDUMxUlHLRmsO1jBZs9JYZC0rCqwsCgMgdMMkoBHWQFMaKDiIKq9zhg2HthItW5K7uTe98TXZOKq9n0KfTqocirzgggmZKJwpE3yMwbZqCO6gw1EhqJMvNftSyZc6-VKYMvmciYntdzb8Nf8f-gE2rm20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052546369</pqid></control><display><type>article</type><title>A meta-heuristic for topology optimization using probabilistic learning</title><source>SpringerLink Journals</source><creator>Valdez, S. Ivvan ; Marroquín, José L. ; Botello, Salvador ; Faurrieta, Noé</creator><creatorcontrib>Valdez, S. Ivvan ; Marroquín, José L. ; Botello, Salvador ; Faurrieta, Noé</creatorcontrib><description>Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA), a global optimization meta-heuristic based on probabilistic learning, which requires of neither user initialization, nor a priori information or design bias in the algorithm. We propose a representation and solution mapping which favors feasible structures and requires a, relatively, low dimensionality (some hundreds), the probabilistic model learns from finite element evaluations to generate well-performed structures. The EDA for topology optimization (EDATOP) is compared with an algorithm, in the state of the art, specially designed to address this problem, demonstrating that our approach is useful for solving real-world problems, escapes from local optima, and delivers better solutions than the comparing algorithm which uses problem knowledge, with a payoff on the computational cost.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-018-1215-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Finite element method ; Global optimization ; Heuristic methods ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Optimization ; Probabilistic models ; Processes ; Shape optimization ; Structural members ; Topology optimization</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2018-11, Vol.48 (11), p.4267-4287</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Applied Intelligence is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6b9daa40ec39b37ce13f35518e16c006ad3901c6ec0d7c0540682b231d40f86f3</citedby><cites>FETCH-LOGICAL-c316t-6b9daa40ec39b37ce13f35518e16c006ad3901c6ec0d7c0540682b231d40f86f3</cites><orcidid>0000-0002-5996-992X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-018-1215-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-018-1215-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41466,42535,51296</link.rule.ids></links><search><creatorcontrib>Valdez, S. Ivvan</creatorcontrib><creatorcontrib>Marroquín, José L.</creatorcontrib><creatorcontrib>Botello, Salvador</creatorcontrib><creatorcontrib>Faurrieta, Noé</creatorcontrib><title>A meta-heuristic for topology optimization using probabilistic learning</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA), a global optimization meta-heuristic based on probabilistic learning, which requires of neither user initialization, nor a priori information or design bias in the algorithm. We propose a representation and solution mapping which favors feasible structures and requires a, relatively, low dimensionality (some hundreds), the probabilistic model learns from finite element evaluations to generate well-performed structures. The EDA for topology optimization (EDATOP) is compared with an algorithm, in the state of the art, specially designed to address this problem, demonstrating that our approach is useful for solving real-world problems, escapes from local optima, and delivers better solutions than the comparing algorithm which uses problem knowledge, with a payoff on the computational cost.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Finite element method</subject><subject>Global optimization</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Probabilistic models</subject><subject>Processes</subject><subject>Shape optimization</subject><subject>Structural members</subject><subject>Topology optimization</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKxDAQhoMouK4-gLeC5-hMk6bNcVl0FRa8KHgLaZquWbpNTdrD-vRmqeDJ08Dw_f8MHyG3CPcIUD5EBF5JClhRzLGgeEYWWJSMllyW52QBMudUCPlxSa5i3AMAY4ALslllBztq-mmn4OLoTNb6kI1-8J3fHTM_jO7gvvXofJ9N0fW7bAi-1rXrZrqzOvRpfU0uWt1Fe_M7l-T96fFt_Uy3r5uX9WpLDUMxUlHLRmsO1jBZs9JYZC0rCqwsCgMgdMMkoBHWQFMaKDiIKq9zhg2HthItW5K7uTe98TXZOKq9n0KfTqocirzgggmZKJwpE3yMwbZqCO6gw1EhqJMvNftSyZc6-VKYMvmciYntdzb8Nf8f-gE2rm20</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Valdez, S. Ivvan</creator><creator>Marroquín, José L.</creator><creator>Botello, Salvador</creator><creator>Faurrieta, Noé</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5996-992X</orcidid></search><sort><creationdate>20181101</creationdate><title>A meta-heuristic for topology optimization using probabilistic learning</title><author>Valdez, S. Ivvan ; Marroquín, José L. ; Botello, Salvador ; Faurrieta, Noé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6b9daa40ec39b37ce13f35518e16c006ad3901c6ec0d7c0540682b231d40f86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Finite element method</topic><topic>Global optimization</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Probabilistic models</topic><topic>Processes</topic><topic>Shape optimization</topic><topic>Structural members</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdez, S. Ivvan</creatorcontrib><creatorcontrib>Marroquín, José L.</creatorcontrib><creatorcontrib>Botello, Salvador</creatorcontrib><creatorcontrib>Faurrieta, Noé</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdez, S. Ivvan</au><au>Marroquín, José L.</au><au>Botello, Salvador</au><au>Faurrieta, Noé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meta-heuristic for topology optimization using probabilistic learning</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>48</volume><issue>11</issue><spage>4267</spage><epage>4287</epage><pages>4267-4287</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Topological shape optimization consists in finding the optimal shape of a mechanical structure by means of a process for removing or inserting new holes and structural elements, that is to say, using a process which produces topological changes. This article introduces a method for automated topological optimization via an Estimation of Distribution Algorithm (EDA), a global optimization meta-heuristic based on probabilistic learning, which requires of neither user initialization, nor a priori information or design bias in the algorithm. We propose a representation and solution mapping which favors feasible structures and requires a, relatively, low dimensionality (some hundreds), the probabilistic model learns from finite element evaluations to generate well-performed structures. The EDA for topology optimization (EDATOP) is compared with an algorithm, in the state of the art, specially designed to address this problem, demonstrating that our approach is useful for solving real-world problems, escapes from local optima, and delivers better solutions than the comparing algorithm which uses problem knowledge, with a payoff on the computational cost.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-018-1215-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5996-992X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2018-11, Vol.48 (11), p.4267-4287
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2052546369
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Computer Science
Finite element method
Global optimization
Heuristic methods
Machine learning
Machines
Manufacturing
Mechanical Engineering
Optimization
Probabilistic models
Processes
Shape optimization
Structural members
Topology optimization
title A meta-heuristic for topology optimization using probabilistic learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meta-heuristic%20for%20topology%20optimization%20using%20probabilistic%20learning&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Valdez,%20S.%20Ivvan&rft.date=2018-11-01&rft.volume=48&rft.issue=11&rft.spage=4267&rft.epage=4287&rft.pages=4267-4287&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-018-1215-1&rft_dat=%3Cproquest_cross%3E2052546369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052546369&rft_id=info:pmid/&rfr_iscdi=true