Breakdown Field Model for 3C-SiC Power Device Simulations

Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-06, Vol.924, p.617-620
Hauptverfasser: Van Zeghbroeck, Bart J., Fardi, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue
container_start_page 617
container_title Materials science forum
container_volume 924
creator Van Zeghbroeck, Bart J.
Fardi, Hamid
description Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.
doi_str_mv 10.4028/www.scientific.net/MSF.924.617
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052525071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052525071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</originalsourceid><addsrcrecordid>eNqN0F9LwzAUBfAgCs7pdygIvrXLn6ZpX0StToUNhelzSJNbzOwaTTqL397IhL3Kfbgvh3Pgh9AFwVmOaTkbxzEL2kI_2NbqrIdhtlzNs4rmWUHEAZqQoqBpJTg9RBNMOU95LopjdBLCGmNGSlJMUHXjQb0bN_bJ3EJnkqUz0CWt8wmr05Wtk2c3gk9u4ctqSFZ2s-3UYF0fTtFRq7oAZ39_il7ndy_1Q7p4un-srxeppoKIFPLWgKaaG1CCsgo3JTUVb0AwI3TTMKxaKopSVazgJckNJaTJK0aEaUqmgE3R-a73w7vPLYRBrt3W93FSUsxpPCxITF3uUtq7EDy08sPbjfLfkmD5yyUjl9xzycglI5eMXDJyxYKrXcHgVR8G0G_7nX9W_ABWVXqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052525071</pqid></control><display><type>article</type><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><source>Scientific.net Journals</source><creator>Van Zeghbroeck, Bart J. ; Fardi, Hamid</creator><creatorcontrib>Van Zeghbroeck, Bart J. ; Fardi, Hamid</creatorcontrib><description>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.924.617</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Computer simulation</subject><ispartof>Materials science forum, 2018-06, Vol.924, p.617-620</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</citedby><cites>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4496?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Van Zeghbroeck, Bart J.</creatorcontrib><creatorcontrib>Fardi, Hamid</creatorcontrib><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><title>Materials science forum</title><description>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</description><subject>Computer simulation</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0F9LwzAUBfAgCs7pdygIvrXLn6ZpX0StToUNhelzSJNbzOwaTTqL397IhL3Kfbgvh3Pgh9AFwVmOaTkbxzEL2kI_2NbqrIdhtlzNs4rmWUHEAZqQoqBpJTg9RBNMOU95LopjdBLCGmNGSlJMUHXjQb0bN_bJ3EJnkqUz0CWt8wmr05Wtk2c3gk9u4ctqSFZ2s-3UYF0fTtFRq7oAZ39_il7ndy_1Q7p4un-srxeppoKIFPLWgKaaG1CCsgo3JTUVb0AwI3TTMKxaKopSVazgJckNJaTJK0aEaUqmgE3R-a73w7vPLYRBrt3W93FSUsxpPCxITF3uUtq7EDy08sPbjfLfkmD5yyUjl9xzycglI5eMXDJyxYKrXcHgVR8G0G_7nX9W_ABWVXqo</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Van Zeghbroeck, Bart J.</creator><creator>Fardi, Hamid</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180605</creationdate><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><author>Van Zeghbroeck, Bart J. ; Fardi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Zeghbroeck, Bart J.</creatorcontrib><creatorcontrib>Fardi, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Zeghbroeck, Bart J.</au><au>Fardi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakdown Field Model for 3C-SiC Power Device Simulations</atitle><jtitle>Materials science forum</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>924</volume><spage>617</spage><epage>620</epage><pages>617-620</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.924.617</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2018-06, Vol.924, p.617-620
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_journals_2052525071
source Scientific.net Journals
subjects Computer simulation
title Breakdown Field Model for 3C-SiC Power Device Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakdown%20Field%20Model%20for%203C-SiC%20Power%20Device%20Simulations&rft.jtitle=Materials%20science%20forum&rft.au=Van%20Zeghbroeck,%20Bart%20J.&rft.date=2018-06-05&rft.volume=924&rft.spage=617&rft.epage=620&rft.pages=617-620&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.924.617&rft_dat=%3Cproquest_cross%3E2052525071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052525071&rft_id=info:pmid/&rfr_iscdi=true