Breakdown Field Model for 3C-SiC Power Device Simulations
Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publica...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-06, Vol.924, p.617-620 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 620 |
---|---|
container_issue | |
container_start_page | 617 |
container_title | Materials science forum |
container_volume | 924 |
creator | Van Zeghbroeck, Bart J. Fardi, Hamid |
description | Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation. |
doi_str_mv | 10.4028/www.scientific.net/MSF.924.617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052525071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052525071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</originalsourceid><addsrcrecordid>eNqN0F9LwzAUBfAgCs7pdygIvrXLn6ZpX0StToUNhelzSJNbzOwaTTqL397IhL3Kfbgvh3Pgh9AFwVmOaTkbxzEL2kI_2NbqrIdhtlzNs4rmWUHEAZqQoqBpJTg9RBNMOU95LopjdBLCGmNGSlJMUHXjQb0bN_bJ3EJnkqUz0CWt8wmr05Wtk2c3gk9u4ctqSFZ2s-3UYF0fTtFRq7oAZ39_il7ndy_1Q7p4un-srxeppoKIFPLWgKaaG1CCsgo3JTUVb0AwI3TTMKxaKopSVazgJckNJaTJK0aEaUqmgE3R-a73w7vPLYRBrt3W93FSUsxpPCxITF3uUtq7EDy08sPbjfLfkmD5yyUjl9xzycglI5eMXDJyxYKrXcHgVR8G0G_7nX9W_ABWVXqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052525071</pqid></control><display><type>article</type><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><source>Scientific.net Journals</source><creator>Van Zeghbroeck, Bart J. ; Fardi, Hamid</creator><creatorcontrib>Van Zeghbroeck, Bart J. ; Fardi, Hamid</creatorcontrib><description>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.924.617</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Computer simulation</subject><ispartof>Materials science forum, 2018-06, Vol.924, p.617-620</ispartof><rights>2018 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</citedby><cites>FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4496?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Van Zeghbroeck, Bart J.</creatorcontrib><creatorcontrib>Fardi, Hamid</creatorcontrib><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><title>Materials science forum</title><description>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</description><subject>Computer simulation</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqN0F9LwzAUBfAgCs7pdygIvrXLn6ZpX0StToUNhelzSJNbzOwaTTqL397IhL3Kfbgvh3Pgh9AFwVmOaTkbxzEL2kI_2NbqrIdhtlzNs4rmWUHEAZqQoqBpJTg9RBNMOU95LopjdBLCGmNGSlJMUHXjQb0bN_bJ3EJnkqUz0CWt8wmr05Wtk2c3gk9u4ctqSFZ2s-3UYF0fTtFRq7oAZ39_il7ndy_1Q7p4un-srxeppoKIFPLWgKaaG1CCsgo3JTUVb0AwI3TTMKxaKopSVazgJckNJaTJK0aEaUqmgE3R-a73w7vPLYRBrt3W93FSUsxpPCxITF3uUtq7EDy08sPbjfLfkmD5yyUjl9xzycglI5eMXDJyxYKrXcHgVR8G0G_7nX9W_ABWVXqo</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Van Zeghbroeck, Bart J.</creator><creator>Fardi, Hamid</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20180605</creationdate><title>Breakdown Field Model for 3C-SiC Power Device Simulations</title><author>Van Zeghbroeck, Bart J. ; Fardi, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2717-e4fdec2c5dea72390b82d95be73d7cbb30af2768a9365814d211b49317db83ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Zeghbroeck, Bart J.</creatorcontrib><creatorcontrib>Fardi, Hamid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Zeghbroeck, Bart J.</au><au>Fardi, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakdown Field Model for 3C-SiC Power Device Simulations</atitle><jtitle>Materials science forum</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>924</volume><spage>617</spage><epage>620</epage><pages>617-620</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Modeling and simulation of 3C-SiC power devices such as MOSFETs and diodes requires a model for the breakdown field that is consistent with the Monte-Carlo-simulated ionization rates of electron and holes and supported by experimental results. The challenge one faces is the limited number of publications reporting such calculations and the limited availability of high-quality ionization breakdown data for 3C-SiC diodes. We therefore performed a series of 2D simulations of both n-type and p-type Schottky diodes and p+-n diodes that confirms the general breakdown field trend with doping density obtained from experiments. We uncovered a difference between n-type and p-type diode breakdown behavior, identified the discrepancy between the calculations and the experimental data, and extracted a simple breakdown field model, useful for further 3C-SiC device design and simulation.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.924.617</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2018-06, Vol.924, p.617-620 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_2052525071 |
source | Scientific.net Journals |
subjects | Computer simulation |
title | Breakdown Field Model for 3C-SiC Power Device Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakdown%20Field%20Model%20for%203C-SiC%20Power%20Device%20Simulations&rft.jtitle=Materials%20science%20forum&rft.au=Van%20Zeghbroeck,%20Bart%20J.&rft.date=2018-06-05&rft.volume=924&rft.spage=617&rft.epage=620&rft.pages=617-620&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.924.617&rft_dat=%3Cproquest_cross%3E2052525071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2052525071&rft_id=info:pmid/&rfr_iscdi=true |