Mixed finite element formulation for dynamics of porous media

Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2018-07, Vol.115 (2), p.141-171
Hauptverfasser: Lotfian, Z., Sivaselvan, M.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 141
container_title International journal for numerical methods in engineering
container_volume 115
creator Lotfian, Z.
Sivaselvan, M.V.
description Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.
doi_str_mv 10.1002/nme.5799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051709876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051709876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8oePHSdZI2yc7BgyzrB-zqRc8hbRLI0jZr0qL993Zdr55mYB7egZeQawoLCsDuutYuuEQ8ITMKKHNgIE_JbDphznFJz8lFSjsASjkUM3K_9d_WZM53vreZbWxruz5zIbZDo3sfusOembHTra9TFly2DzEMKWut8fqSnDndJHv1N-fk43H9vnrON29PL6uHTV4zLDB3mpWVq5iolyW3gqEUgCCoFI7zmhdCQIWaITgqTAU1mrLkWprCSOYcxWJObo65-xg-B5t6tQtD7KaXigGnEnApxaRuj6qOIaVondpH3-o4KgrqUI6aylGHciaaH-mXb-z4r1Ov2_Wv_wFre2RS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051709876</pqid></control><display><type>article</type><title>Mixed finite element formulation for dynamics of porous media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lotfian, Z. ; Sivaselvan, M.V.</creator><creatorcontrib>Lotfian, Z. ; Sivaselvan, M.V.</creatorcontrib><description>Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5799</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Boundary element method ; Computational fluid dynamics ; Differential equations ; Discretization ; Dynamic models ; dynamic poroelasticity ; Dynamic stability ; Finite element method ; Fluid flow ; Incompressible flow ; Initial conditions ; locking ; Lumping ; mimetic ; mixed finite element ; Porous materials ; Porous media ; Raviart‐Thomas ; stability ; Time integration ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2018-07, Vol.115 (2), p.141-171</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</citedby><cites>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</cites><orcidid>0000-0001-6661-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lotfian, Z.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><title>Mixed finite element formulation for dynamics of porous media</title><title>International journal for numerical methods in engineering</title><description>Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</description><subject>Boundary element method</subject><subject>Computational fluid dynamics</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dynamic models</subject><subject>dynamic poroelasticity</subject><subject>Dynamic stability</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Initial conditions</subject><subject>locking</subject><subject>Lumping</subject><subject>mimetic</subject><subject>mixed finite element</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Raviart‐Thomas</subject><subject>stability</subject><subject>Time integration</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8oePHSdZI2yc7BgyzrB-zqRc8hbRLI0jZr0qL993Zdr55mYB7egZeQawoLCsDuutYuuEQ8ITMKKHNgIE_JbDphznFJz8lFSjsASjkUM3K_9d_WZM53vreZbWxruz5zIbZDo3sfusOembHTra9TFly2DzEMKWut8fqSnDndJHv1N-fk43H9vnrON29PL6uHTV4zLDB3mpWVq5iolyW3gqEUgCCoFI7zmhdCQIWaITgqTAU1mrLkWprCSOYcxWJObo65-xg-B5t6tQtD7KaXigGnEnApxaRuj6qOIaVondpH3-o4KgrqUI6aylGHciaaH-mXb-z4r1Ov2_Wv_wFre2RS</recordid><startdate>20180713</startdate><enddate>20180713</enddate><creator>Lotfian, Z.</creator><creator>Sivaselvan, M.V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></search><sort><creationdate>20180713</creationdate><title>Mixed finite element formulation for dynamics of porous media</title><author>Lotfian, Z. ; Sivaselvan, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary element method</topic><topic>Computational fluid dynamics</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dynamic models</topic><topic>dynamic poroelasticity</topic><topic>Dynamic stability</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Initial conditions</topic><topic>locking</topic><topic>Lumping</topic><topic>mimetic</topic><topic>mixed finite element</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Raviart‐Thomas</topic><topic>stability</topic><topic>Time integration</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotfian, Z.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotfian, Z.</au><au>Sivaselvan, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite element formulation for dynamics of porous media</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-07-13</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>141</spage><epage>171</epage><pages>141-171</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5799</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2018-07, Vol.115 (2), p.141-171
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2051709876
source Wiley Online Library Journals Frontfile Complete
subjects Boundary element method
Computational fluid dynamics
Differential equations
Discretization
Dynamic models
dynamic poroelasticity
Dynamic stability
Finite element method
Fluid flow
Incompressible flow
Initial conditions
locking
Lumping
mimetic
mixed finite element
Porous materials
Porous media
Raviart‐Thomas
stability
Time integration
Wave propagation
title Mixed finite element formulation for dynamics of porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20element%20formulation%20for%20dynamics%20of%20porous%20media&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lotfian,%20Z.&rft.date=2018-07-13&rft.volume=115&rft.issue=2&rft.spage=141&rft.epage=171&rft.pages=141-171&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5799&rft_dat=%3Cproquest_cross%3E2051709876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051709876&rft_id=info:pmid/&rfr_iscdi=true