Mixed finite element formulation for dynamics of porous media
Summary This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed elemen...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2018-07, Vol.115 (2), p.141-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 2 |
container_start_page | 141 |
container_title | International journal for numerical methods in engineering |
container_volume | 115 |
creator | Lotfian, Z. Sivaselvan, M.V. |
description | Summary
This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained. |
doi_str_mv | 10.1002/nme.5799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051709876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051709876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgCq6r4E8oePHSdZI2yc7BgyzrB-zqRc8hbRLI0jZr0qL993Zdr55mYB7egZeQawoLCsDuutYuuEQ8ITMKKHNgIE_JbDphznFJz8lFSjsASjkUM3K_9d_WZM53vreZbWxruz5zIbZDo3sfusOembHTra9TFly2DzEMKWut8fqSnDndJHv1N-fk43H9vnrON29PL6uHTV4zLDB3mpWVq5iolyW3gqEUgCCoFI7zmhdCQIWaITgqTAU1mrLkWprCSOYcxWJObo65-xg-B5t6tQtD7KaXigGnEnApxaRuj6qOIaVondpH3-o4KgrqUI6aylGHciaaH-mXb-z4r1Ov2_Wv_wFre2RS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051709876</pqid></control><display><type>article</type><title>Mixed finite element formulation for dynamics of porous media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lotfian, Z. ; Sivaselvan, M.V.</creator><creatorcontrib>Lotfian, Z. ; Sivaselvan, M.V.</creatorcontrib><description>Summary
This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5799</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Boundary element method ; Computational fluid dynamics ; Differential equations ; Discretization ; Dynamic models ; dynamic poroelasticity ; Dynamic stability ; Finite element method ; Fluid flow ; Incompressible flow ; Initial conditions ; locking ; Lumping ; mimetic ; mixed finite element ; Porous materials ; Porous media ; Raviart‐Thomas ; stability ; Time integration ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2018-07, Vol.115 (2), p.141-171</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</citedby><cites>FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</cites><orcidid>0000-0001-6661-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lotfian, Z.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><title>Mixed finite element formulation for dynamics of porous media</title><title>International journal for numerical methods in engineering</title><description>Summary
This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</description><subject>Boundary element method</subject><subject>Computational fluid dynamics</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dynamic models</subject><subject>dynamic poroelasticity</subject><subject>Dynamic stability</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Initial conditions</subject><subject>locking</subject><subject>Lumping</subject><subject>mimetic</subject><subject>mixed finite element</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Raviart‐Thomas</subject><subject>stability</subject><subject>Time integration</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1LxDAQBuAgCq6r4E8oePHSdZI2yc7BgyzrB-zqRc8hbRLI0jZr0qL993Zdr55mYB7egZeQawoLCsDuutYuuEQ8ITMKKHNgIE_JbDphznFJz8lFSjsASjkUM3K_9d_WZM53vreZbWxruz5zIbZDo3sfusOembHTra9TFly2DzEMKWut8fqSnDndJHv1N-fk43H9vnrON29PL6uHTV4zLDB3mpWVq5iolyW3gqEUgCCoFI7zmhdCQIWaITgqTAU1mrLkWprCSOYcxWJObo65-xg-B5t6tQtD7KaXigGnEnApxaRuj6qOIaVondpH3-o4KgrqUI6aylGHciaaH-mXb-z4r1Ov2_Wv_wFre2RS</recordid><startdate>20180713</startdate><enddate>20180713</enddate><creator>Lotfian, Z.</creator><creator>Sivaselvan, M.V.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></search><sort><creationdate>20180713</creationdate><title>Mixed finite element formulation for dynamics of porous media</title><author>Lotfian, Z. ; Sivaselvan, M.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-fa24bfb26c845e629760906176f55c53660b9a290f16db0c9d445a7d3d72ff193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary element method</topic><topic>Computational fluid dynamics</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dynamic models</topic><topic>dynamic poroelasticity</topic><topic>Dynamic stability</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Initial conditions</topic><topic>locking</topic><topic>Lumping</topic><topic>mimetic</topic><topic>mixed finite element</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Raviart‐Thomas</topic><topic>stability</topic><topic>Time integration</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotfian, Z.</creatorcontrib><creatorcontrib>Sivaselvan, M.V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotfian, Z.</au><au>Sivaselvan, M.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed finite element formulation for dynamics of porous media</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-07-13</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>141</spage><epage>171</epage><pages>141-171</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
This paper presents a numerical approach for computing solutions to Biot's fully dynamic model of saturated porous media with incompressible solid and fluid phases. Spatial discretization is based on a three‐field (u‐w‐p) formulation, employing a lowest‐order Raviart‐Thomas mixed element for the fluid Darcy velocity (w) and pressure (p) fields, and a nodal finite element for skeleton displacement field (u). The discretization is constructed based on the natural topology of the variables and satisfies the Ladyženskaja‐Babuška‐Brezzi stability condition, avoiding locking in the incompressible and undrained limits. Since fluid acceleration is not neglected, the three‐field formulation fully captures dynamic behavior even under high‐frequency loading phenomena. The importance of consistent initial conditions is addressed for poroelasticity equations with the mass balance constraint, a system of differential algebraic equations. Energy balance is derived for the porous medium and used to assess accuracy of time integration. To demonstrate the performance of the proposed approach, a variety of numerical studies are carried out including verification with analytical and boundary element solutions and analyses of wave propagation, effect of hydraulic conductivity on damping and frequency content, energy balance, mass lumping, mesh pattern and size, and stability. Some discrepancies found in dynamic poroelasticity results in the literature are also explained.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5799</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0001-6661-5567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2018-07, Vol.115 (2), p.141-171 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2051709876 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary element method Computational fluid dynamics Differential equations Discretization Dynamic models dynamic poroelasticity Dynamic stability Finite element method Fluid flow Incompressible flow Initial conditions locking Lumping mimetic mixed finite element Porous materials Porous media Raviart‐Thomas stability Time integration Wave propagation |
title | Mixed finite element formulation for dynamics of porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20finite%20element%20formulation%20for%20dynamics%20of%20porous%20media&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lotfian,%20Z.&rft.date=2018-07-13&rft.volume=115&rft.issue=2&rft.spage=141&rft.epage=171&rft.pages=141-171&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5799&rft_dat=%3Cproquest_cross%3E2051709876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051709876&rft_id=info:pmid/&rfr_iscdi=true |