Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes
In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a...
Gespeichert in:
Veröffentlicht in: | Advances in polymer technology 2018-06, Vol.37 (4), p.1142-1152 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1152 |
---|---|
container_issue | 4 |
container_start_page | 1142 |
container_title | Advances in polymer technology |
container_volume | 37 |
creator | Su, Shuenn‐Kung Gu, Jia‐Hao Lee, Hsun‐Tsing Yu, Shu‐Huei Wu, Cheng‐Lung Suen, Maw‐Cherng |
description | In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials. |
doi_str_mv | 10.1002/adv.21773 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051694246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051694246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO_6pkyyr_gBSJSpUsbVcx1ZTpXGxHVB3PQJn5CSkDVtWI818783MQ-iewIAA0KEqPgeUpCm7QD0CeZZQRvNL1IOUQSJEml-jmxC2AIRwwXpoO7PW6Biws1jVeOzdTsVS43nVOO9-jt_T0lXtpMBLVx202ntXKR1dbbCrcdwYvPRub3wszdnj1HkzoamiquNZ03gTN6o24RZdWVUFc_dX-2g1n60mz8ni9ellMl4kmjHOEq54kVkqOMvISMGaZZpxkgJwYY2gUKQsy7QWJi8oEXoNYg3FCFiqqc1EwfroobNtT_1oTIhy6xpftxslhREROaft53302FHauxC8sXLvy53yB0lAnpKUbZLynGTLDjv2q6zM4X9QjqfvneIX6lh17A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051694246</pqid></control><display><type>article</type><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</creator><creatorcontrib>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</creatorcontrib><description>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</description><identifier>ISSN: 0730-6679</identifier><identifier>EISSN: 1098-2329</identifier><identifier>DOI: 10.1002/adv.21773</identifier><language>eng</language><publisher>London: Hindawi Limited</publisher><subject>Adhesion tests ; Adhesive bonding ; Biodegradability ; Biomedical materials ; Bonding strength ; Chemical resistance ; Diphenyl methane diisocyanate ; Elongation ; Erythrocyte adhesion ; Erythrocytes ; Fluorine ; Free energy ; Glass transition temperature ; Hydrogen bonding ; Organic chemistry ; Polycaprolactone ; Polyurethane resins ; Polyurethanes ; Storage modulus ; Thermal analysis</subject><ispartof>Advances in polymer technology, 2018-06, Vol.37 (4), p.1142-1152</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</citedby><cites>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</cites><orcidid>0000-0002-4179-1027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Su, Shuenn‐Kung</creatorcontrib><creatorcontrib>Gu, Jia‐Hao</creatorcontrib><creatorcontrib>Lee, Hsun‐Tsing</creatorcontrib><creatorcontrib>Yu, Shu‐Huei</creatorcontrib><creatorcontrib>Wu, Cheng‐Lung</creatorcontrib><creatorcontrib>Suen, Maw‐Cherng</creatorcontrib><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><title>Advances in polymer technology</title><description>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</description><subject>Adhesion tests</subject><subject>Adhesive bonding</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Chemical resistance</subject><subject>Diphenyl methane diisocyanate</subject><subject>Elongation</subject><subject>Erythrocyte adhesion</subject><subject>Erythrocytes</subject><subject>Fluorine</subject><subject>Free energy</subject><subject>Glass transition temperature</subject><subject>Hydrogen bonding</subject><subject>Organic chemistry</subject><subject>Polycaprolactone</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Storage modulus</subject><subject>Thermal analysis</subject><issn>0730-6679</issn><issn>1098-2329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO_6pkyyr_gBSJSpUsbVcx1ZTpXGxHVB3PQJn5CSkDVtWI818783MQ-iewIAA0KEqPgeUpCm7QD0CeZZQRvNL1IOUQSJEml-jmxC2AIRwwXpoO7PW6Biws1jVeOzdTsVS43nVOO9-jt_T0lXtpMBLVx202ntXKR1dbbCrcdwYvPRub3wszdnj1HkzoamiquNZ03gTN6o24RZdWVUFc_dX-2g1n60mz8ni9ellMl4kmjHOEq54kVkqOMvISMGaZZpxkgJwYY2gUKQsy7QWJi8oEXoNYg3FCFiqqc1EwfroobNtT_1oTIhy6xpftxslhREROaft53302FHauxC8sXLvy53yB0lAnpKUbZLynGTLDjv2q6zM4X9QjqfvneIX6lh17A</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Su, Shuenn‐Kung</creator><creator>Gu, Jia‐Hao</creator><creator>Lee, Hsun‐Tsing</creator><creator>Yu, Shu‐Huei</creator><creator>Wu, Cheng‐Lung</creator><creator>Suen, Maw‐Cherng</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4179-1027</orcidid></search><sort><creationdate>201806</creationdate><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><author>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesion tests</topic><topic>Adhesive bonding</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Chemical resistance</topic><topic>Diphenyl methane diisocyanate</topic><topic>Elongation</topic><topic>Erythrocyte adhesion</topic><topic>Erythrocytes</topic><topic>Fluorine</topic><topic>Free energy</topic><topic>Glass transition temperature</topic><topic>Hydrogen bonding</topic><topic>Organic chemistry</topic><topic>Polycaprolactone</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Storage modulus</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Shuenn‐Kung</creatorcontrib><creatorcontrib>Gu, Jia‐Hao</creatorcontrib><creatorcontrib>Lee, Hsun‐Tsing</creatorcontrib><creatorcontrib>Yu, Shu‐Huei</creatorcontrib><creatorcontrib>Wu, Cheng‐Lung</creatorcontrib><creatorcontrib>Suen, Maw‐Cherng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advances in polymer technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shuenn‐Kung</au><au>Gu, Jia‐Hao</au><au>Lee, Hsun‐Tsing</au><au>Yu, Shu‐Huei</au><au>Wu, Cheng‐Lung</au><au>Suen, Maw‐Cherng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</atitle><jtitle>Advances in polymer technology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>37</volume><issue>4</issue><spage>1142</spage><epage>1152</epage><pages>1142-1152</pages><issn>0730-6679</issn><eissn>1098-2329</eissn><abstract>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</abstract><cop>London</cop><pub>Hindawi Limited</pub><doi>10.1002/adv.21773</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4179-1027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-6679 |
ispartof | Advances in polymer technology, 2018-06, Vol.37 (4), p.1142-1152 |
issn | 0730-6679 1098-2329 |
language | eng |
recordid | cdi_proquest_journals_2051694246 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adhesion tests Adhesive bonding Biodegradability Biomedical materials Bonding strength Chemical resistance Diphenyl methane diisocyanate Elongation Erythrocyte adhesion Erythrocytes Fluorine Free energy Glass transition temperature Hydrogen bonding Organic chemistry Polycaprolactone Polyurethane resins Polyurethanes Storage modulus Thermal analysis |
title | Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20an%20Aromatic%20Fluoro%E2%80%90Diol%20and%20Polycaprolactone%20on%20the%20Properties%20of%20the%20Resultant%20Polyurethanes&rft.jtitle=Advances%20in%20polymer%20technology&rft.au=Su,%20Shuenn%E2%80%90Kung&rft.date=2018-06&rft.volume=37&rft.issue=4&rft.spage=1142&rft.epage=1152&rft.pages=1142-1152&rft.issn=0730-6679&rft.eissn=1098-2329&rft_id=info:doi/10.1002/adv.21773&rft_dat=%3Cproquest_cross%3E2051694246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051694246&rft_id=info:pmid/&rfr_iscdi=true |