Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes

In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in polymer technology 2018-06, Vol.37 (4), p.1142-1152
Hauptverfasser: Su, Shuenn‐Kung, Gu, Jia‐Hao, Lee, Hsun‐Tsing, Yu, Shu‐Huei, Wu, Cheng‐Lung, Suen, Maw‐Cherng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1152
container_issue 4
container_start_page 1142
container_title Advances in polymer technology
container_volume 37
creator Su, Shuenn‐Kung
Gu, Jia‐Hao
Lee, Hsun‐Tsing
Yu, Shu‐Huei
Wu, Cheng‐Lung
Suen, Maw‐Cherng
description In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.
doi_str_mv 10.1002/adv.21773
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051694246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051694246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO_6pkyyr_gBSJSpUsbVcx1ZTpXGxHVB3PQJn5CSkDVtWI818783MQ-iewIAA0KEqPgeUpCm7QD0CeZZQRvNL1IOUQSJEml-jmxC2AIRwwXpoO7PW6Biws1jVeOzdTsVS43nVOO9-jt_T0lXtpMBLVx202ntXKR1dbbCrcdwYvPRub3wszdnj1HkzoamiquNZ03gTN6o24RZdWVUFc_dX-2g1n60mz8ni9ellMl4kmjHOEq54kVkqOMvISMGaZZpxkgJwYY2gUKQsy7QWJi8oEXoNYg3FCFiqqc1EwfroobNtT_1oTIhy6xpftxslhREROaft53302FHauxC8sXLvy53yB0lAnpKUbZLynGTLDjv2q6zM4X9QjqfvneIX6lh17A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051694246</pqid></control><display><type>article</type><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</creator><creatorcontrib>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</creatorcontrib><description>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</description><identifier>ISSN: 0730-6679</identifier><identifier>EISSN: 1098-2329</identifier><identifier>DOI: 10.1002/adv.21773</identifier><language>eng</language><publisher>London: Hindawi Limited</publisher><subject>Adhesion tests ; Adhesive bonding ; Biodegradability ; Biomedical materials ; Bonding strength ; Chemical resistance ; Diphenyl methane diisocyanate ; Elongation ; Erythrocyte adhesion ; Erythrocytes ; Fluorine ; Free energy ; Glass transition temperature ; Hydrogen bonding ; Organic chemistry ; Polycaprolactone ; Polyurethane resins ; Polyurethanes ; Storage modulus ; Thermal analysis</subject><ispartof>Advances in polymer technology, 2018-06, Vol.37 (4), p.1142-1152</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>Copyright © 2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</citedby><cites>FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</cites><orcidid>0000-0002-4179-1027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Su, Shuenn‐Kung</creatorcontrib><creatorcontrib>Gu, Jia‐Hao</creatorcontrib><creatorcontrib>Lee, Hsun‐Tsing</creatorcontrib><creatorcontrib>Yu, Shu‐Huei</creatorcontrib><creatorcontrib>Wu, Cheng‐Lung</creatorcontrib><creatorcontrib>Suen, Maw‐Cherng</creatorcontrib><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><title>Advances in polymer technology</title><description>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</description><subject>Adhesion tests</subject><subject>Adhesive bonding</subject><subject>Biodegradability</subject><subject>Biomedical materials</subject><subject>Bonding strength</subject><subject>Chemical resistance</subject><subject>Diphenyl methane diisocyanate</subject><subject>Elongation</subject><subject>Erythrocyte adhesion</subject><subject>Erythrocytes</subject><subject>Fluorine</subject><subject>Free energy</subject><subject>Glass transition temperature</subject><subject>Hydrogen bonding</subject><subject>Organic chemistry</subject><subject>Polycaprolactone</subject><subject>Polyurethane resins</subject><subject>Polyurethanes</subject><subject>Storage modulus</subject><subject>Thermal analysis</subject><issn>0730-6679</issn><issn>1098-2329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFIO_6pkyyr_gBSJSpUsbVcx1ZTpXGxHVB3PQJn5CSkDVtWI818783MQ-iewIAA0KEqPgeUpCm7QD0CeZZQRvNL1IOUQSJEml-jmxC2AIRwwXpoO7PW6Biws1jVeOzdTsVS43nVOO9-jt_T0lXtpMBLVx202ntXKR1dbbCrcdwYvPRub3wszdnj1HkzoamiquNZ03gTN6o24RZdWVUFc_dX-2g1n60mz8ni9ellMl4kmjHOEq54kVkqOMvISMGaZZpxkgJwYY2gUKQsy7QWJi8oEXoNYg3FCFiqqc1EwfroobNtT_1oTIhy6xpftxslhREROaft53302FHauxC8sXLvy53yB0lAnpKUbZLynGTLDjv2q6zM4X9QjqfvneIX6lh17A</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Su, Shuenn‐Kung</creator><creator>Gu, Jia‐Hao</creator><creator>Lee, Hsun‐Tsing</creator><creator>Yu, Shu‐Huei</creator><creator>Wu, Cheng‐Lung</creator><creator>Suen, Maw‐Cherng</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4179-1027</orcidid></search><sort><creationdate>201806</creationdate><title>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</title><author>Su, Shuenn‐Kung ; Gu, Jia‐Hao ; Lee, Hsun‐Tsing ; Yu, Shu‐Huei ; Wu, Cheng‐Lung ; Suen, Maw‐Cherng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-4a4d8f2643815a0b38c34170046fe620d7388cc6e9d216cb06b0d5037c2f86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adhesion tests</topic><topic>Adhesive bonding</topic><topic>Biodegradability</topic><topic>Biomedical materials</topic><topic>Bonding strength</topic><topic>Chemical resistance</topic><topic>Diphenyl methane diisocyanate</topic><topic>Elongation</topic><topic>Erythrocyte adhesion</topic><topic>Erythrocytes</topic><topic>Fluorine</topic><topic>Free energy</topic><topic>Glass transition temperature</topic><topic>Hydrogen bonding</topic><topic>Organic chemistry</topic><topic>Polycaprolactone</topic><topic>Polyurethane resins</topic><topic>Polyurethanes</topic><topic>Storage modulus</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Shuenn‐Kung</creatorcontrib><creatorcontrib>Gu, Jia‐Hao</creatorcontrib><creatorcontrib>Lee, Hsun‐Tsing</creatorcontrib><creatorcontrib>Yu, Shu‐Huei</creatorcontrib><creatorcontrib>Wu, Cheng‐Lung</creatorcontrib><creatorcontrib>Suen, Maw‐Cherng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advances in polymer technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Shuenn‐Kung</au><au>Gu, Jia‐Hao</au><au>Lee, Hsun‐Tsing</au><au>Yu, Shu‐Huei</au><au>Wu, Cheng‐Lung</au><au>Suen, Maw‐Cherng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes</atitle><jtitle>Advances in polymer technology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>37</volume><issue>4</issue><spage>1142</spage><epage>1152</epage><pages>1142-1152</pages><issn>0730-6679</issn><eissn>1098-2329</eissn><abstract>In this study, we used 4,4′‐diphenylmethane diisocyanate (MDI), polycaprolactone diol (PCL), and 4‐(1,1,1,3,3,3‐hexafluoro‐2‐(4‐hydroxyphenyl)propan‐2‐yl)phenol (HFP) to synthesize novel biodegradable F‐containing polyurethanes (HFP/PUs). Among which PCL is a biodegradable soft segment and HFP is a fluoro chain extender. According to FT‐IR and XPS spectroscopies, there is a strong hydrogen bonding interaction between F‐ (in CF3) and –NH groups in the HFP/PUs. For the HFP/PUs, the initial decomposition temperature, glass transition temperature (Tg), dynamic Tg, tensile strength, Young's modulus, and chemical resistance increase with the content of HFP unit or hard segment. This behavior is due to the increase of rigid hard segment and the interaction between CF3 and ‐NH groups in the HFP/PUs. On the contrary, HFP/PU containing more HFP has lower value of elongation at break. In addition, the AFM images show that the HFP/PU containing higher HFP content exhibits more humpy protrusions and is more rugged. The results of in vitro erythrocyte adhesion tests indicate that the average quantity of erythrocytes adhered on HFP/PU surface decreases with increasing HFP or fluorine content. So fluorine element with low surface free energy is helpful for HFP/PUs to be used as biomedical materials.</abstract><cop>London</cop><pub>Hindawi Limited</pub><doi>10.1002/adv.21773</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4179-1027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0730-6679
ispartof Advances in polymer technology, 2018-06, Vol.37 (4), p.1142-1152
issn 0730-6679
1098-2329
language eng
recordid cdi_proquest_journals_2051694246
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adhesion tests
Adhesive bonding
Biodegradability
Biomedical materials
Bonding strength
Chemical resistance
Diphenyl methane diisocyanate
Elongation
Erythrocyte adhesion
Erythrocytes
Fluorine
Free energy
Glass transition temperature
Hydrogen bonding
Organic chemistry
Polycaprolactone
Polyurethane resins
Polyurethanes
Storage modulus
Thermal analysis
title Effects of an Aromatic Fluoro‐Diol and Polycaprolactone on the Properties of the Resultant Polyurethanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20an%20Aromatic%20Fluoro%E2%80%90Diol%20and%20Polycaprolactone%20on%20the%20Properties%20of%20the%20Resultant%20Polyurethanes&rft.jtitle=Advances%20in%20polymer%20technology&rft.au=Su,%20Shuenn%E2%80%90Kung&rft.date=2018-06&rft.volume=37&rft.issue=4&rft.spage=1142&rft.epage=1152&rft.pages=1142-1152&rft.issn=0730-6679&rft.eissn=1098-2329&rft_id=info:doi/10.1002/adv.21773&rft_dat=%3Cproquest_cross%3E2051694246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051694246&rft_id=info:pmid/&rfr_iscdi=true