Study on negacyclic codes over the ring Zp[u]/<uk+1-u
In this paper, we study the properties of negacyclic codes over the ring R = Z p + u Z p + ⋯ + u k Z p , for odd prime p , using decomposition method. We have determined the generators of negacyclic and dual negacyclic codes. We have also established the necessary and sufficient condition for it to...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics & computing 2019-02, Vol.59 (1-2), p.693-700 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 1-2 |
container_start_page | 693 |
container_title | Journal of applied mathematics & computing |
container_volume | 59 |
creator | Bag, Tushar Upadhyay, Ashish K. |
description | In this paper, we study the properties of negacyclic codes over the ring
R
=
Z
p
+
u
Z
p
+
⋯
+
u
k
Z
p
, for odd prime
p
, using decomposition method. We have determined the generators of negacyclic and dual negacyclic codes. We have also established the necessary and sufficient condition for it to contains it’s dual. It is also shown that the
Z
p
-Gray image of a negacyclic code of length
n
is a quasi negacyclic code of length 3
n
. |
doi_str_mv | 10.1007/s12190-018-1197-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2051405585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051405585</sourcerecordid><originalsourceid>FETCH-LOGICAL-p715-7927e9af311337e11cdd94ca24c79878127760c9ae89ff576312cedbfecd4f1f3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWKsP4C3gUWJnsjubBLxIsSoUPNiTImHNJrW17K6bjdC3d5cKnmYYPub_-Ri7RLhBADWLKNGAANQC0ShBR2yCuiAhQdPxsJPRgobDKTuLcQtQKANmwuilT9WeNzWv_bp0e7fbOO6aykfe_PiO95-ed5t6zV_bt_Q-u01f1yjSOTsJ5S76i785ZavF_Wr-KJbPD0_zu6VoFZJQRipvypAhZpnyiK6qTO5KmTtltNIolSrAmdJrEwKpIkPpfPURvKvygCGbsqvD27ZrvpOPvd02qauHRCuBMAciTQMlD1Rsx6a--6cQ7GjHHuzYwY4d7VjKfgHOt1Xe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051405585</pqid></control><display><type>article</type><title>Study on negacyclic codes over the ring Zp[u]/<uk+1-u</title><source>SpringerLink Journals</source><creator>Bag, Tushar ; Upadhyay, Ashish K.</creator><creatorcontrib>Bag, Tushar ; Upadhyay, Ashish K.</creatorcontrib><description>In this paper, we study the properties of negacyclic codes over the ring
R
=
Z
p
+
u
Z
p
+
⋯
+
u
k
Z
p
, for odd prime
p
, using decomposition method. We have determined the generators of negacyclic and dual negacyclic codes. We have also established the necessary and sufficient condition for it to contains it’s dual. It is also shown that the
Z
p
-Gray image of a negacyclic code of length
n
is a quasi negacyclic code of length 3
n
.</description><identifier>ISSN: 1598-5865</identifier><identifier>EISSN: 1865-2085</identifier><identifier>DOI: 10.1007/s12190-018-1197-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Codes ; Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Original Research ; Theory of Computation</subject><ispartof>Journal of applied mathematics & computing, 2019-02, Vol.59 (1-2), p.693-700</ispartof><rights>Korean Society for Computational and Applied Mathematics 2018</rights><rights>Journal of Applied Mathematics and Computing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p715-7927e9af311337e11cdd94ca24c79878127760c9ae89ff576312cedbfecd4f1f3</cites><orcidid>0000-0002-7613-8351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12190-018-1197-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12190-018-1197-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bag, Tushar</creatorcontrib><creatorcontrib>Upadhyay, Ashish K.</creatorcontrib><title>Study on negacyclic codes over the ring Zp[u]/<uk+1-u</title><title>Journal of applied mathematics & computing</title><addtitle>J. Appl. Math. Comput</addtitle><description>In this paper, we study the properties of negacyclic codes over the ring
R
=
Z
p
+
u
Z
p
+
⋯
+
u
k
Z
p
, for odd prime
p
, using decomposition method. We have determined the generators of negacyclic and dual negacyclic codes. We have also established the necessary and sufficient condition for it to contains it’s dual. It is also shown that the
Z
p
-Gray image of a negacyclic code of length
n
is a quasi negacyclic code of length 3
n
.</description><subject>Applied mathematics</subject><subject>Codes</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Original Research</subject><subject>Theory of Computation</subject><issn>1598-5865</issn><issn>1865-2085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkMFKAzEQhoMoWKsP4C3gUWJnsjubBLxIsSoUPNiTImHNJrW17K6bjdC3d5cKnmYYPub_-Ri7RLhBADWLKNGAANQC0ShBR2yCuiAhQdPxsJPRgobDKTuLcQtQKANmwuilT9WeNzWv_bp0e7fbOO6aykfe_PiO95-ed5t6zV_bt_Q-u01f1yjSOTsJ5S76i785ZavF_Wr-KJbPD0_zu6VoFZJQRipvypAhZpnyiK6qTO5KmTtltNIolSrAmdJrEwKpIkPpfPURvKvygCGbsqvD27ZrvpOPvd02qauHRCuBMAciTQMlD1Rsx6a--6cQ7GjHHuzYwY4d7VjKfgHOt1Xe</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Bag, Tushar</creator><creator>Upadhyay, Ashish K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7613-8351</orcidid></search><sort><creationdate>20190215</creationdate><title>Study on negacyclic codes over the ring Zp[u]/<uk+1-u</title><author>Bag, Tushar ; Upadhyay, Ashish K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p715-7927e9af311337e11cdd94ca24c79878127760c9ae89ff576312cedbfecd4f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied mathematics</topic><topic>Codes</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Original Research</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bag, Tushar</creatorcontrib><creatorcontrib>Upadhyay, Ashish K.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied mathematics & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bag, Tushar</au><au>Upadhyay, Ashish K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on negacyclic codes over the ring Zp[u]/<uk+1-u</atitle><jtitle>Journal of applied mathematics & computing</jtitle><stitle>J. Appl. Math. Comput</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>59</volume><issue>1-2</issue><spage>693</spage><epage>700</epage><pages>693-700</pages><issn>1598-5865</issn><eissn>1865-2085</eissn><abstract>In this paper, we study the properties of negacyclic codes over the ring
R
=
Z
p
+
u
Z
p
+
⋯
+
u
k
Z
p
, for odd prime
p
, using decomposition method. We have determined the generators of negacyclic and dual negacyclic codes. We have also established the necessary and sufficient condition for it to contains it’s dual. It is also shown that the
Z
p
-Gray image of a negacyclic code of length
n
is a quasi negacyclic code of length 3
n
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12190-018-1197-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7613-8351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1598-5865 |
ispartof | Journal of applied mathematics & computing, 2019-02, Vol.59 (1-2), p.693-700 |
issn | 1598-5865 1865-2085 |
language | eng |
recordid | cdi_proquest_journals_2051405585 |
source | SpringerLink Journals |
subjects | Applied mathematics Codes Computational Mathematics and Numerical Analysis Mathematical analysis Mathematical and Computational Engineering Mathematics Mathematics and Statistics Mathematics of Computing Original Research Theory of Computation |
title | Study on negacyclic codes over the ring Zp[u]/<uk+1-u |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T04%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20negacyclic%20codes%20over%20the%20ring%20Zp%5Bu%5D/%3Cuk+1-u&rft.jtitle=Journal%20of%20applied%20mathematics%20&%20computing&rft.au=Bag,%20Tushar&rft.date=2019-02-15&rft.volume=59&rft.issue=1-2&rft.spage=693&rft.epage=700&rft.pages=693-700&rft.issn=1598-5865&rft.eissn=1865-2085&rft_id=info:doi/10.1007/s12190-018-1197-5&rft_dat=%3Cproquest_sprin%3E2051405585%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051405585&rft_id=info:pmid/&rfr_iscdi=true |