Extremal functions for modules of systems of measures

We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in R 2 , to R n making use of Fuglede’s p -module of systems of measures. The extremal functions are identified and the p -module of systems of measures is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2017-10, Vol.133 (1), p.335-359
Hauptverfasser: Brakalova, Melkana, Markina, Irina, Vasil’ev, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 335
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 133
creator Brakalova, Melkana
Markina, Irina
Vasil’ev, Alexander
description We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in R 2 , to R n making use of Fuglede’s p -module of systems of measures. The extremal functions are identified and the p -module of systems of measures is computed in condensers of rather general type and in their images under homeomorphisms of certain regularity. At the beginning, we discuss and apply Rodin’s Theorem in order to obtain estimates for the conformal modules of parallelograms and ring domains in terms of directional dilatations.
doi_str_mv 10.1007/s11854-017-0036-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051194020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051194020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a4caf604ec04af68310f106bd14ca92df29e8a09826d2a7f5453e73199b2c86f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMsslmj1KqFQpe9BzS3URaupua2QX7701dwZOneWHeD3gYu0W4R4DqgRCNKjlgxQGk5njGZqi04kZJc85mAAJ5pSu4ZFdEOwClailmTC2_huQ7ty_C2DfDNvZUhJiKLrbj3lMRQ0FHGnz3IzvvaEyertlFcHvyN793zt6flm-LFV-_Pr8sHte8kagH7srGBQ2lb6DMwkiEgKA3LeZHLdogam8c1EboVrgqqFJJX0ms641ojA5yzu6m3kOKn6Onwe7imPo8aQUoxLoEAdmFk6tJkSj5YA9p27l0tAj2RMdOdGymY090LOaMmDKUvf2HT3_N_4e-AaPPZno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051194020</pqid></control><display><type>article</type><title>Extremal functions for modules of systems of measures</title><source>SpringerLink Journals</source><creator>Brakalova, Melkana ; Markina, Irina ; Vasil’ev, Alexander</creator><creatorcontrib>Brakalova, Melkana ; Markina, Irina ; Vasil’ev, Alexander</creatorcontrib><description>We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in R 2 , to R n making use of Fuglede’s p -module of systems of measures. The extremal functions are identified and the p -module of systems of measures is computed in condensers of rather general type and in their images under homeomorphisms of certain regularity. At the beginning, we discuss and apply Rodin’s Theorem in order to obtain estimates for the conformal modules of parallelograms and ring domains in terms of directional dilatations.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-017-0036-1</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Condensers (liquefiers) ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Modules ; Parallelograms ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.335-359</ispartof><rights>Hebrew University Magnes Press 2017</rights><rights>Journal dAnalyse Mathematique is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a4caf604ec04af68310f106bd14ca92df29e8a09826d2a7f5453e73199b2c86f3</citedby><cites>FETCH-LOGICAL-c316t-a4caf604ec04af68310f106bd14ca92df29e8a09826d2a7f5453e73199b2c86f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11854-017-0036-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11854-017-0036-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brakalova, Melkana</creatorcontrib><creatorcontrib>Markina, Irina</creatorcontrib><creatorcontrib>Vasil’ev, Alexander</creatorcontrib><title>Extremal functions for modules of systems of measures</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in R 2 , to R n making use of Fuglede’s p -module of systems of measures. The extremal functions are identified and the p -module of systems of measures is computed in condensers of rather general type and in their images under homeomorphisms of certain regularity. At the beginning, we discuss and apply Rodin’s Theorem in order to obtain estimates for the conformal modules of parallelograms and ring domains in terms of directional dilatations.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Condensers (liquefiers)</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Parallelograms</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMsslmj1KqFQpe9BzS3URaupua2QX7701dwZOneWHeD3gYu0W4R4DqgRCNKjlgxQGk5njGZqi04kZJc85mAAJ5pSu4ZFdEOwClailmTC2_huQ7ty_C2DfDNvZUhJiKLrbj3lMRQ0FHGnz3IzvvaEyertlFcHvyN793zt6flm-LFV-_Pr8sHte8kagH7srGBQ2lb6DMwkiEgKA3LeZHLdogam8c1EboVrgqqFJJX0ms641ojA5yzu6m3kOKn6Onwe7imPo8aQUoxLoEAdmFk6tJkSj5YA9p27l0tAj2RMdOdGymY090LOaMmDKUvf2HT3_N_4e-AaPPZno</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Brakalova, Melkana</creator><creator>Markina, Irina</creator><creator>Vasil’ev, Alexander</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20171001</creationdate><title>Extremal functions for modules of systems of measures</title><author>Brakalova, Melkana ; Markina, Irina ; Vasil’ev, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a4caf604ec04af68310f106bd14ca92df29e8a09826d2a7f5453e73199b2c86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Condensers (liquefiers)</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Parallelograms</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brakalova, Melkana</creatorcontrib><creatorcontrib>Markina, Irina</creatorcontrib><creatorcontrib>Vasil’ev, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brakalova, Melkana</au><au>Markina, Irina</au><au>Vasil’ev, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal functions for modules of systems of measures</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>133</volume><issue>1</issue><spage>335</spage><epage>359</epage><pages>335-359</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We extend a result by Rodin, which provides an explicit method for finding the extremal function and the 2-module of a foliated family of curves in R 2 , to R n making use of Fuglede’s p -module of systems of measures. The extremal functions are identified and the p -module of systems of measures is computed in condensers of rather general type and in their images under homeomorphisms of certain regularity. At the beginning, we discuss and apply Rodin’s Theorem in order to obtain estimates for the conformal modules of parallelograms and ring domains in terms of directional dilatations.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-017-0036-1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2017-10, Vol.133 (1), p.335-359
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2051194020
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Analysis
Condensers (liquefiers)
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematics
Mathematics and Statistics
Modules
Parallelograms
Partial Differential Equations
title Extremal functions for modules of systems of measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20functions%20for%20modules%20of%20systems%20of%20measures&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Brakalova,%20Melkana&rft.date=2017-10-01&rft.volume=133&rft.issue=1&rft.spage=335&rft.epage=359&rft.pages=335-359&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-017-0036-1&rft_dat=%3Cproquest_cross%3E2051194020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051194020&rft_id=info:pmid/&rfr_iscdi=true