Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation

We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2018-05, Vol.195 (2), p.676-689
1. Verfasser: Chang, Jen-Hsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 2
container_start_page 676
container_title Theoretical and mathematical physics
container_volume 195
creator Chang, Jen-Hsu
description We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to −∞, then all the peak locations are on a vertical line, while if the time goes to ∞, then they are all on a horizontal line, i.e., a π/2 rotation is observed after interaction.
doi_str_mv 10.1134/S0040577918050045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2051152051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2051152051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-937b031fb8057f22933b939d80d079f68c6436927186374858c7ef0b5de73f5d3</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2EViHRjHcewsq6rQiiKQStdRPjZ1ldSp7VTKjjtwQ06CQ5FYIDYzo3kfvRmErjHcYkziuxVADJSxFHOgfqYnaIQpI2FKCDlFowEOB_wcXVi7BcAAHI_QemL7pnXaqTKY7PK6t8oGWgZPXe1U3TVtsNJ155Tefa_dRgSPeaUbZ8Xh8_3jRbiDyu3moGoVLoLZvssH7iU6k3ltxdVPH6P1_ex1Og-Xzw-L6WQZliSJnc_GCiBYFj4zk1HksxYpSSsOFbBUJrxMYpKkEcM8ISzmlJdMSChoJRiRtCJjdHP0bY3ed8K6bKs748-wWQQUYzpUz8JHVmm0tUbIrDWqyU2fYciG72V_vuc10VFjPXf3Jsyv8_-iLwDccR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2051152051</pqid></control><display><type>article</type><title>Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Chang, Jen-Hsu</creator><creatorcontrib>Chang, Jen-Hsu</creatorcontrib><description>We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to −∞, then all the peak locations are on a vertical line, while if the time goes to ∞, then they are all on a horizontal line, i.e., a π/2 rotation is observed after interaction.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577918050045</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Rotation ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2018-05, Vol.195 (2), p.676-689</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-937b031fb8057f22933b939d80d079f68c6436927186374858c7ef0b5de73f5d3</citedby><cites>FETCH-LOGICAL-c364t-937b031fb8057f22933b939d80d079f68c6436927186374858c7ef0b5de73f5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577918050045$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577918050045$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Chang, Jen-Hsu</creatorcontrib><title>Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to −∞, then all the peak locations are on a vertical line, while if the time goes to ∞, then they are all on a horizontal line, i.e., a π/2 rotation is observed after interaction.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotation</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtOwzAQtRBIlMIB2EViHRjHcewsq6rQiiKQStdRPjZ1ldSp7VTKjjtwQ06CQ5FYIDYzo3kfvRmErjHcYkziuxVADJSxFHOgfqYnaIQpI2FKCDlFowEOB_wcXVi7BcAAHI_QemL7pnXaqTKY7PK6t8oGWgZPXe1U3TVtsNJ155Tefa_dRgSPeaUbZ8Xh8_3jRbiDyu3moGoVLoLZvssH7iU6k3ltxdVPH6P1_ex1Og-Xzw-L6WQZliSJnc_GCiBYFj4zk1HksxYpSSsOFbBUJrxMYpKkEcM8ISzmlJdMSChoJRiRtCJjdHP0bY3ed8K6bKs748-wWQQUYzpUz8JHVmm0tUbIrDWqyU2fYciG72V_vuc10VFjPXf3Jsyv8_-iLwDccR8</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chang, Jen-Hsu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180501</creationdate><title>Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation</title><author>Chang, Jen-Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-937b031fb8057f22933b939d80d079f68c6436927186374858c7ef0b5de73f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Jen-Hsu</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Jen-Hsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>195</volume><issue>2</issue><spage>676</spage><epage>689</epage><pages>676-689</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to −∞, then all the peak locations are on a vertical line, while if the time goes to ∞, then they are all on a horizontal line, i.e., a π/2 rotation is observed after interaction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577918050045</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theoretical and mathematical physics, 2018-05, Vol.195 (2), p.676-689
issn 0040-5779
1573-9333
language eng
recordid cdi_proquest_journals_2051152051
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Rotation
Theoretical
title Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Analysis%20of%20Multilump%20Solutions%20of%20the%20Kadomtsev%E2%80%93Petviashvili-I%20Equation&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Chang,%20Jen-Hsu&rft.date=2018-05-01&rft.volume=195&rft.issue=2&rft.spage=676&rft.epage=689&rft.pages=676-689&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577918050045&rft_dat=%3Cproquest_cross%3E2051152051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2051152051&rft_id=info:pmid/&rfr_iscdi=true