Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system

The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2018-07, Vol.37 (7), p.543-553
Hauptverfasser: Wu, Ling-Kang, Li, Qiu-Lin, Li, Mo, Xu, Ben, Liu, Wei, Zhao, Ping, Bai, Bing-Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 7
container_start_page 543
container_title Rare metals
container_volume 37
creator Wu, Ling-Kang
Li, Qiu-Lin
Li, Mo
Xu, Ben
Liu, Wei
Zhao, Ping
Bai, Bing-Zhe
description The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m −2 , respectively, with the error   γ 120  >  γ 110  >  γ 112  >  γ 111 . The results of the present study are also in good agreement with experimental data and computational data in the literature.
doi_str_mv 10.1007/s12598-017-0922-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2050849959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050849959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOppMk0yylOIfFNzo1pDJ3JSU6aRNZhbd-Q6-oU9iygiuXJ0L9zvnXg5C14zeMkrru8wqoRWhrCZUVxXRJ2jGlKxJzZQ4LTOljFBRsXN0kfOGUs6lpDP0sbSdGzs7hNjj6HGOXWi_P7-6sB9Di0M_QPLWBdthnwAw9JDWB2z7shty0ZDjkOLuUFA89i0kF2MHLc6HPMD2Ep1522W4-tU5en98eFs-k9Xr08vyfkXcgsmBtI3UinkLjXWWKy9BCM6b2kMjhWAaXCMrRZlrXfl6YaW2BbQOrGo5d7CYo5spd5fifoQ8mE0cU19OmooKqrjWQheKTZRLMecE3uxS2Np0MIyaY41mqtGUGs2xRnP0VJMnF7ZfQ_pL_t_0A4t2eQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050849959</pqid></control><display><type>article</type><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</creator><creatorcontrib>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</creatorcontrib><description>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m −2 , respectively, with the error &lt;2%. Meanwhile, both of the methods provide the rank of interfacial free energy by γ 100  &gt;  γ 120  &gt;  γ 110  &gt;  γ 112  &gt;  γ 111 . The results of the present study are also in good agreement with experimental data and computational data in the literature.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-017-0922-9</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Computer simulation ; Energy ; Free energy ; Materials Engineering ; Materials Science ; Mathematical analysis ; Mechanical properties ; Melting points ; Metallic Materials ; Molecular chains ; Molecular dynamics ; Nanoscale Science and Technology ; Physical Chemistry ; Variations</subject><ispartof>Rare metals, 2018-07, Vol.37 (7), p.543-553</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Rare Metals is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</citedby><cites>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</cites><orcidid>0000-0003-0459-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-017-0922-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-017-0922-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Ling-Kang</creatorcontrib><creatorcontrib>Li, Qiu-Lin</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Bai, Bing-Zhe</creatorcontrib><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m −2 , respectively, with the error &lt;2%. Meanwhile, both of the methods provide the rank of interfacial free energy by γ 100  &gt;  γ 120  &gt;  γ 110  &gt;  γ 112  &gt;  γ 111 . The results of the present study are also in good agreement with experimental data and computational data in the literature.</description><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Free energy</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Melting points</subject><subject>Metallic Materials</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Variations</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOppMk0yylOIfFNzo1pDJ3JSU6aRNZhbd-Q6-oU9iygiuXJ0L9zvnXg5C14zeMkrru8wqoRWhrCZUVxXRJ2jGlKxJzZQ4LTOljFBRsXN0kfOGUs6lpDP0sbSdGzs7hNjj6HGOXWi_P7-6sB9Di0M_QPLWBdthnwAw9JDWB2z7shty0ZDjkOLuUFA89i0kF2MHLc6HPMD2Ep1522W4-tU5en98eFs-k9Xr08vyfkXcgsmBtI3UinkLjXWWKy9BCM6b2kMjhWAaXCMrRZlrXfl6YaW2BbQOrGo5d7CYo5spd5fifoQ8mE0cU19OmooKqrjWQheKTZRLMecE3uxS2Np0MIyaY41mqtGUGs2xRnP0VJMnF7ZfQ_pL_t_0A4t2eQU</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wu, Ling-Kang</creator><creator>Li, Qiu-Lin</creator><creator>Li, Mo</creator><creator>Xu, Ben</creator><creator>Liu, Wei</creator><creator>Zhao, Ping</creator><creator>Bai, Bing-Zhe</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0459-8188</orcidid></search><sort><creationdate>20180701</creationdate><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><author>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Free energy</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Melting points</topic><topic>Metallic Materials</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ling-Kang</creatorcontrib><creatorcontrib>Li, Qiu-Lin</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Bai, Bing-Zhe</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ling-Kang</au><au>Li, Qiu-Lin</au><au>Li, Mo</au><au>Xu, Ben</au><au>Liu, Wei</au><au>Zhao, Ping</au><au>Bai, Bing-Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>37</volume><issue>7</issue><spage>543</spage><epage>553</epage><pages>543-553</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m −2 , respectively, with the error &lt;2%. Meanwhile, both of the methods provide the rank of interfacial free energy by γ 100  &gt;  γ 120  &gt;  γ 110  &gt;  γ 112  &gt;  γ 111 . The results of the present study are also in good agreement with experimental data and computational data in the literature.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-017-0922-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0459-8188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2018-07, Vol.37 (7), p.543-553
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2050849959
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Anisotropy
Biomaterials
Chemistry and Materials Science
Computer simulation
Energy
Free energy
Materials Engineering
Materials Science
Mathematical analysis
Mechanical properties
Melting points
Metallic Materials
Molecular chains
Molecular dynamics
Nanoscale Science and Technology
Physical Chemistry
Variations
title Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20solid%E2%80%93liquid%20interfacial%20free%20energy%20and%20its%20anisotropy%20in%20undercooled%20system&rft.jtitle=Rare%20metals&rft.au=Wu,%20Ling-Kang&rft.date=2018-07-01&rft.volume=37&rft.issue=7&rft.spage=543&rft.epage=553&rft.pages=543-553&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-017-0922-9&rft_dat=%3Cproquest_cross%3E2050849959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050849959&rft_id=info:pmid/&rfr_iscdi=true