Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system
The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method...
Gespeichert in:
Veröffentlicht in: | Rare metals 2018-07, Vol.37 (7), p.543-553 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 7 |
container_start_page | 543 |
container_title | Rare metals |
container_volume | 37 |
creator | Wu, Ling-Kang Li, Qiu-Lin Li, Mo Xu, Ben Liu, Wei Zhao, Ping Bai, Bing-Zhe |
description | The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m
−2
, respectively, with the error
γ
120
>
γ
110
>
γ
112
>
γ
111
. The results of the present study are also in good agreement with experimental data and computational data in the literature. |
doi_str_mv | 10.1007/s12598-017-0922-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2050849959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050849959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKsP4C7gOppMk0yylOIfFNzo1pDJ3JSU6aRNZhbd-Q6-oU9iygiuXJ0L9zvnXg5C14zeMkrru8wqoRWhrCZUVxXRJ2jGlKxJzZQ4LTOljFBRsXN0kfOGUs6lpDP0sbSdGzs7hNjj6HGOXWi_P7-6sB9Di0M_QPLWBdthnwAw9JDWB2z7shty0ZDjkOLuUFA89i0kF2MHLc6HPMD2Ep1522W4-tU5en98eFs-k9Xr08vyfkXcgsmBtI3UinkLjXWWKy9BCM6b2kMjhWAaXCMrRZlrXfl6YaW2BbQOrGo5d7CYo5spd5fifoQ8mE0cU19OmooKqrjWQheKTZRLMecE3uxS2Np0MIyaY41mqtGUGs2xRnP0VJMnF7ZfQ_pL_t_0A4t2eQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050849959</pqid></control><display><type>article</type><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</creator><creatorcontrib>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</creatorcontrib><description>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m
−2
, respectively, with the error <2%. Meanwhile, both of the methods provide the rank of interfacial free energy by
γ
100
>
γ
120
>
γ
110
>
γ
112
>
γ
111
. The results of the present study are also in good agreement with experimental data and computational data in the literature.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-017-0922-9</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Anisotropy ; Biomaterials ; Chemistry and Materials Science ; Computer simulation ; Energy ; Free energy ; Materials Engineering ; Materials Science ; Mathematical analysis ; Mechanical properties ; Melting points ; Metallic Materials ; Molecular chains ; Molecular dynamics ; Nanoscale Science and Technology ; Physical Chemistry ; Variations</subject><ispartof>Rare metals, 2018-07, Vol.37 (7), p.543-553</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Rare Metals is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</citedby><cites>FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</cites><orcidid>0000-0003-0459-8188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-017-0922-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-017-0922-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wu, Ling-Kang</creatorcontrib><creatorcontrib>Li, Qiu-Lin</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Bai, Bing-Zhe</creatorcontrib><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m
−2
, respectively, with the error <2%. Meanwhile, both of the methods provide the rank of interfacial free energy by
γ
100
>
γ
120
>
γ
110
>
γ
112
>
γ
111
. The results of the present study are also in good agreement with experimental data and computational data in the literature.</description><subject>Anisotropy</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Free energy</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Melting points</subject><subject>Metallic Materials</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><subject>Variations</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KAzEUhYMoWKsP4C7gOppMk0yylOIfFNzo1pDJ3JSU6aRNZhbd-Q6-oU9iygiuXJ0L9zvnXg5C14zeMkrru8wqoRWhrCZUVxXRJ2jGlKxJzZQ4LTOljFBRsXN0kfOGUs6lpDP0sbSdGzs7hNjj6HGOXWi_P7-6sB9Di0M_QPLWBdthnwAw9JDWB2z7shty0ZDjkOLuUFA89i0kF2MHLc6HPMD2Ep1522W4-tU5en98eFs-k9Xr08vyfkXcgsmBtI3UinkLjXWWKy9BCM6b2kMjhWAaXCMrRZlrXfl6YaW2BbQOrGo5d7CYo5spd5fifoQ8mE0cU19OmooKqrjWQheKTZRLMecE3uxS2Np0MIyaY41mqtGUGs2xRnP0VJMnF7ZfQ_pL_t_0A4t2eQU</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Wu, Ling-Kang</creator><creator>Li, Qiu-Lin</creator><creator>Li, Mo</creator><creator>Xu, Ben</creator><creator>Liu, Wei</creator><creator>Zhao, Ping</creator><creator>Bai, Bing-Zhe</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0459-8188</orcidid></search><sort><creationdate>20180701</creationdate><title>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</title><author>Wu, Ling-Kang ; Li, Qiu-Lin ; Li, Mo ; Xu, Ben ; Liu, Wei ; Zhao, Ping ; Bai, Bing-Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db6981faebaca48f6e5544b7feb65519ecb62801cdc6603a69aacaacea8d44ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Free energy</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Melting points</topic><topic>Metallic Materials</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Ling-Kang</creatorcontrib><creatorcontrib>Li, Qiu-Lin</creatorcontrib><creatorcontrib>Li, Mo</creatorcontrib><creatorcontrib>Xu, Ben</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhao, Ping</creatorcontrib><creatorcontrib>Bai, Bing-Zhe</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Ling-Kang</au><au>Li, Qiu-Lin</au><au>Li, Mo</au><au>Xu, Ben</au><au>Liu, Wei</au><au>Zhao, Ping</au><au>Bai, Bing-Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>37</volume><issue>7</issue><spage>543</spage><epage>553</epage><pages>543-553</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The solid–liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solid–liquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m
−2
, respectively, with the error <2%. Meanwhile, both of the methods provide the rank of interfacial free energy by
γ
100
>
γ
120
>
γ
110
>
γ
112
>
γ
111
. The results of the present study are also in good agreement with experimental data and computational data in the literature.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-017-0922-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0459-8188</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2018-07, Vol.37 (7), p.543-553 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2050849959 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Biomaterials Chemistry and Materials Science Computer simulation Energy Free energy Materials Engineering Materials Science Mathematical analysis Mechanical properties Melting points Metallic Materials Molecular chains Molecular dynamics Nanoscale Science and Technology Physical Chemistry Variations |
title | Calculation of solid–liquid interfacial free energy and its anisotropy in undercooled system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20solid%E2%80%93liquid%20interfacial%20free%20energy%20and%20its%20anisotropy%20in%20undercooled%20system&rft.jtitle=Rare%20metals&rft.au=Wu,%20Ling-Kang&rft.date=2018-07-01&rft.volume=37&rft.issue=7&rft.spage=543&rft.epage=553&rft.pages=543-553&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-017-0922-9&rft_dat=%3Cproquest_cross%3E2050849959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050849959&rft_id=info:pmid/&rfr_iscdi=true |