Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation

•A method for the charging coordination of electric vehicles is proposed.•Optimization algorithms based on metaheuristics are developed.•A 449-node distribution system is used to test the proposed method. This paper proposes three metaheuristic optimization techniques to solve the plug-in electric v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2017-01, Vol.142, p.351-361
Hauptverfasser: Arias, Nataly Bañol, Franco, John F., Lavorato, Marina, Romero, Rubén
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue
container_start_page 351
container_title Electric power systems research
container_volume 142
creator Arias, Nataly Bañol
Franco, John F.
Lavorato, Marina
Romero, Rubén
description •A method for the charging coordination of electric vehicles is proposed.•Optimization algorithms based on metaheuristics are developed.•A 449-node distribution system is used to test the proposed method. This paper proposes three metaheuristic optimization techniques to solve the plug-in electric vehicle (PEV) charging coordination problem in electrical distribution systems (EDSs). Optimization algorithms based on tabu search, greedy randomized adaptive search procedure, and a novel hybrid optimization algorithm are developed with the objective of minimizing the total operational costs of the EDS, considering the impact of charging the electric vehicle batteries during a specific time period. The proposed methodologies determine a charging schedule for the electric vehicle batteries considering priorities according to the PEV owners charging preferences. A 449-node system with two distributed generation units was used to demonstrate the efficiency of the proposed methodologies, taking into account different PEV penetration levels. The results show that the charging schedule found makes the economic operation of the EDS possible, while satisfying operational and priority constraints.
doi_str_mv 10.1016/j.epsr.2016.09.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2050597737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779616303704</els_id><sourcerecordid>2050597737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-252c416fb4af5a8423b6149966c81150441c4d41a97026e21c7b084f6b1c332a3</originalsourceid><addsrcrecordid>eNp9Uctq3TAQFaGF3qb9ga4EXdsZybJkQzYhpEkhpZtkLWR5bOviWK4kp6S_0p-tblzorqsZOK9hDiGfGJQMmLw4lrjGUPK8l9CWwJozcmCNqgoOQr4hB6hUUyjVynfkfYxHAJCtqg_k9zdMZsItuJicpX5N7sn9Msn5hZp59MGl6SnSwQeaJtxxM1PrfejdsvP8QNd5Gwu3UJzRppCNnnFydkZqJxNGt4w0g33OCK7bXkXxJSbMzj9zwD8EezriguHV-AN5O5g54se_85w8frl5uL4r7r_ffr2-ui-sqCAVvOZWMDl0wgy1aQSvOslE20ppG8ZqEIJZ0QtmWgVcImdWddCIQXbMVhU31Tn5vPuuwf_YMCZ99FtYcqTmUEPdKlWpzOI7ywYfY8BBryH_IrxoBvpUgj7qUwn6VIKGVucSsuhyF2G-_9lh0NE6XCz2LuRP6d67_8n_AEIClIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050597737</pqid></control><display><type>article</type><title>Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Arias, Nataly Bañol ; Franco, John F. ; Lavorato, Marina ; Romero, Rubén</creator><creatorcontrib>Arias, Nataly Bañol ; Franco, John F. ; Lavorato, Marina ; Romero, Rubén</creatorcontrib><description>•A method for the charging coordination of electric vehicles is proposed.•Optimization algorithms based on metaheuristics are developed.•A 449-node distribution system is used to test the proposed method. This paper proposes three metaheuristic optimization techniques to solve the plug-in electric vehicle (PEV) charging coordination problem in electrical distribution systems (EDSs). Optimization algorithms based on tabu search, greedy randomized adaptive search procedure, and a novel hybrid optimization algorithm are developed with the objective of minimizing the total operational costs of the EDS, considering the impact of charging the electric vehicle batteries during a specific time period. The proposed methodologies determine a charging schedule for the electric vehicle batteries considering priorities according to the PEV owners charging preferences. A 449-node system with two distributed generation units was used to demonstrate the efficiency of the proposed methodologies, taking into account different PEV penetration levels. The results show that the charging schedule found makes the economic operation of the EDS possible, while satisfying operational and priority constraints.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2016.09.018</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive search techniques ; Adaptive systems ; Algorithms ; Batteries ; Distributed generation ; Electric power distribution ; Electric vehicle charging ; Electric vehicles ; Electrical distribution system ; Electricity distribution ; Heuristic methods ; Hybrid algorithm ; Impact strength ; Metaheuristic ; Optimization ; Optimization algorithms ; Plug-in electric vehicle charging coordination ; Rechargeable batteries ; Simulation ; Tabu search</subject><ispartof>Electric power systems research, 2017-01, Vol.142, p.351-361</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-252c416fb4af5a8423b6149966c81150441c4d41a97026e21c7b084f6b1c332a3</citedby><cites>FETCH-LOGICAL-c430t-252c416fb4af5a8423b6149966c81150441c4d41a97026e21c7b084f6b1c332a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2016.09.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Arias, Nataly Bañol</creatorcontrib><creatorcontrib>Franco, John F.</creatorcontrib><creatorcontrib>Lavorato, Marina</creatorcontrib><creatorcontrib>Romero, Rubén</creatorcontrib><title>Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation</title><title>Electric power systems research</title><description>•A method for the charging coordination of electric vehicles is proposed.•Optimization algorithms based on metaheuristics are developed.•A 449-node distribution system is used to test the proposed method. This paper proposes three metaheuristic optimization techniques to solve the plug-in electric vehicle (PEV) charging coordination problem in electrical distribution systems (EDSs). Optimization algorithms based on tabu search, greedy randomized adaptive search procedure, and a novel hybrid optimization algorithm are developed with the objective of minimizing the total operational costs of the EDS, considering the impact of charging the electric vehicle batteries during a specific time period. The proposed methodologies determine a charging schedule for the electric vehicle batteries considering priorities according to the PEV owners charging preferences. A 449-node system with two distributed generation units was used to demonstrate the efficiency of the proposed methodologies, taking into account different PEV penetration levels. The results show that the charging schedule found makes the economic operation of the EDS possible, while satisfying operational and priority constraints.</description><subject>Adaptive search techniques</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Electric vehicle charging</subject><subject>Electric vehicles</subject><subject>Electrical distribution system</subject><subject>Electricity distribution</subject><subject>Heuristic methods</subject><subject>Hybrid algorithm</subject><subject>Impact strength</subject><subject>Metaheuristic</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Plug-in electric vehicle charging coordination</subject><subject>Rechargeable batteries</subject><subject>Simulation</subject><subject>Tabu search</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9Uctq3TAQFaGF3qb9ga4EXdsZybJkQzYhpEkhpZtkLWR5bOviWK4kp6S_0p-tblzorqsZOK9hDiGfGJQMmLw4lrjGUPK8l9CWwJozcmCNqgoOQr4hB6hUUyjVynfkfYxHAJCtqg_k9zdMZsItuJicpX5N7sn9Msn5hZp59MGl6SnSwQeaJtxxM1PrfejdsvP8QNd5Gwu3UJzRppCNnnFydkZqJxNGt4w0g33OCK7bXkXxJSbMzj9zwD8EezriguHV-AN5O5g54se_85w8frl5uL4r7r_ffr2-ui-sqCAVvOZWMDl0wgy1aQSvOslE20ppG8ZqEIJZ0QtmWgVcImdWddCIQXbMVhU31Tn5vPuuwf_YMCZ99FtYcqTmUEPdKlWpzOI7ywYfY8BBryH_IrxoBvpUgj7qUwn6VIKGVucSsuhyF2G-_9lh0NE6XCz2LuRP6d67_8n_AEIClIg</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Arias, Nataly Bañol</creator><creator>Franco, John F.</creator><creator>Lavorato, Marina</creator><creator>Romero, Rubén</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201701</creationdate><title>Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation</title><author>Arias, Nataly Bañol ; Franco, John F. ; Lavorato, Marina ; Romero, Rubén</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-252c416fb4af5a8423b6149966c81150441c4d41a97026e21c7b084f6b1c332a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive search techniques</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Electric vehicle charging</topic><topic>Electric vehicles</topic><topic>Electrical distribution system</topic><topic>Electricity distribution</topic><topic>Heuristic methods</topic><topic>Hybrid algorithm</topic><topic>Impact strength</topic><topic>Metaheuristic</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Plug-in electric vehicle charging coordination</topic><topic>Rechargeable batteries</topic><topic>Simulation</topic><topic>Tabu search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Nataly Bañol</creatorcontrib><creatorcontrib>Franco, John F.</creatorcontrib><creatorcontrib>Lavorato, Marina</creatorcontrib><creatorcontrib>Romero, Rubén</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Nataly Bañol</au><au>Franco, John F.</au><au>Lavorato, Marina</au><au>Romero, Rubén</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation</atitle><jtitle>Electric power systems research</jtitle><date>2017-01</date><risdate>2017</risdate><volume>142</volume><spage>351</spage><epage>361</epage><pages>351-361</pages><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>•A method for the charging coordination of electric vehicles is proposed.•Optimization algorithms based on metaheuristics are developed.•A 449-node distribution system is used to test the proposed method. This paper proposes three metaheuristic optimization techniques to solve the plug-in electric vehicle (PEV) charging coordination problem in electrical distribution systems (EDSs). Optimization algorithms based on tabu search, greedy randomized adaptive search procedure, and a novel hybrid optimization algorithm are developed with the objective of minimizing the total operational costs of the EDS, considering the impact of charging the electric vehicle batteries during a specific time period. The proposed methodologies determine a charging schedule for the electric vehicle batteries considering priorities according to the PEV owners charging preferences. A 449-node system with two distributed generation units was used to demonstrate the efficiency of the proposed methodologies, taking into account different PEV penetration levels. The results show that the charging schedule found makes the economic operation of the EDS possible, while satisfying operational and priority constraints.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2016.09.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2017-01, Vol.142, p.351-361
issn 0378-7796
1873-2046
language eng
recordid cdi_proquest_journals_2050597737
source Elsevier ScienceDirect Journals Complete
subjects Adaptive search techniques
Adaptive systems
Algorithms
Batteries
Distributed generation
Electric power distribution
Electric vehicle charging
Electric vehicles
Electrical distribution system
Electricity distribution
Heuristic methods
Hybrid algorithm
Impact strength
Metaheuristic
Optimization
Optimization algorithms
Plug-in electric vehicle charging coordination
Rechargeable batteries
Simulation
Tabu search
title Metaheuristic optimization algorithms for the optimal coordination of plug-in electric vehicle charging in distribution systems with distributed generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metaheuristic%20optimization%20algorithms%20for%20the%20optimal%20coordination%20of%20plug-in%20electric%20vehicle%20charging%20in%20distribution%20systems%20with%20distributed%20generation&rft.jtitle=Electric%20power%20systems%20research&rft.au=Arias,%20Nataly%20Ba%C3%B1ol&rft.date=2017-01&rft.volume=142&rft.spage=351&rft.epage=361&rft.pages=351-361&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2016.09.018&rft_dat=%3Cproquest_cross%3E2050597737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050597737&rft_id=info:pmid/&rft_els_id=S0378779616303704&rfr_iscdi=true