Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)
We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the dopin...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2018, Vol.20 (22), p.3034-3042 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3042 |
---|---|
container_issue | 22 |
container_start_page | 3034 |
container_title | CrystEngComm |
container_volume | 20 |
creator | Wang, Shan Wu, Xiaofeng Long, Yuan Zhang, Chenyang Cui, Xiaoqiang Lu, Dayong |
description | We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials. |
doi_str_mv | 10.1039/c8ce00421h |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2049903317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049903317</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-8e65b5fd7007fd0809df82fdefb56a2fa5c7f646cdf037fbd999ab75a03627773</originalsourceid><addsrcrecordid>eNpFUM1KAzEYDIJgrV58goAXhd36JdlNNgcPUtQKlV70XLKbpN3abmqSlfYBBM8-ok9ioIKXmbnMD4PQBYERASZvmqoxAAUlyyM0IAXneQWMnaDTEFYApCAEBuhzstfexaXxG7XGYd8lGdqQ4Y3z26Vbu8U-wyH6vom9NxlWncYbtehMbBu89W5rfGxNwM7iJN1HeGuj-TfgqRp78vP1vXvudjOGr3b4Fqd9WQJ6SIMRuz5Dx1atgzn_4yF6fbh_GU_y6ezxaXw3zRe04jGvDC_r0moBIKyGCqS2FbXa2LrkilpVNsLygjfaAhO21lJKVYtSAeNUCMGG6PKQm5a_9ybE-cr1vkuVcwqFlOkfItgvk6hhDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049903317</pqid></control><display><type>article</type><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</creator><creatorcontrib>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</creatorcontrib><description>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c8ce00421h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Coercivity ; Crystallization ; Cubic lattice ; Doping ; Ferromagnetic materials ; Field strength ; Hydrothermal crystal growth ; Hysteresis ; Lattice parameters ; Magnetic properties ; Magnetization ; Mathematical morphology ; Morphology ; Perovskite structure ; Perovskites ; Phase transitions ; Single crystals ; Synthesis ; Temperature dependence ; Transition points</subject><ispartof>CrystEngComm, 2018, Vol.20 (22), p.3034-3042</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Long, Yuan</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Lu, Dayong</creatorcontrib><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><title>CrystEngComm</title><description>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</description><subject>Antiferromagnetism</subject><subject>Coercivity</subject><subject>Crystallization</subject><subject>Cubic lattice</subject><subject>Doping</subject><subject>Ferromagnetic materials</subject><subject>Field strength</subject><subject>Hydrothermal crystal growth</subject><subject>Hysteresis</subject><subject>Lattice parameters</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Single crystals</subject><subject>Synthesis</subject><subject>Temperature dependence</subject><subject>Transition points</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KAzEYDIJgrV58goAXhd36JdlNNgcPUtQKlV70XLKbpN3abmqSlfYBBM8-ok9ioIKXmbnMD4PQBYERASZvmqoxAAUlyyM0IAXneQWMnaDTEFYApCAEBuhzstfexaXxG7XGYd8lGdqQ4Y3z26Vbu8U-wyH6vom9NxlWncYbtehMbBu89W5rfGxNwM7iJN1HeGuj-TfgqRp78vP1vXvudjOGr3b4Fqd9WQJ6SIMRuz5Dx1atgzn_4yF6fbh_GU_y6ezxaXw3zRe04jGvDC_r0moBIKyGCqS2FbXa2LrkilpVNsLygjfaAhO21lJKVYtSAeNUCMGG6PKQm5a_9ybE-cr1vkuVcwqFlOkfItgvk6hhDA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Wang, Shan</creator><creator>Wu, Xiaofeng</creator><creator>Long, Yuan</creator><creator>Zhang, Chenyang</creator><creator>Cui, Xiaoqiang</creator><creator>Lu, Dayong</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2018</creationdate><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><author>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-8e65b5fd7007fd0809df82fdefb56a2fa5c7f646cdf037fbd999ab75a03627773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiferromagnetism</topic><topic>Coercivity</topic><topic>Crystallization</topic><topic>Cubic lattice</topic><topic>Doping</topic><topic>Ferromagnetic materials</topic><topic>Field strength</topic><topic>Hydrothermal crystal growth</topic><topic>Hysteresis</topic><topic>Lattice parameters</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Single crystals</topic><topic>Synthesis</topic><topic>Temperature dependence</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Long, Yuan</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Lu, Dayong</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shan</au><au>Wu, Xiaofeng</au><au>Long, Yuan</au><au>Zhang, Chenyang</au><au>Cui, Xiaoqiang</au><au>Lu, Dayong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</atitle><jtitle>CrystEngComm</jtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>22</issue><spage>3034</spage><epage>3042</epage><pages>3034-3042</pages><eissn>1466-8033</eissn><abstract>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ce00421h</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2018, Vol.20 (22), p.3034-3042 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2049903317 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Antiferromagnetism Coercivity Crystallization Cubic lattice Doping Ferromagnetic materials Field strength Hydrothermal crystal growth Hysteresis Lattice parameters Magnetic properties Magnetization Mathematical morphology Morphology Perovskite structure Perovskites Phase transitions Single crystals Synthesis Temperature dependence Transition points |
title | Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis,%20morphology,%20structure,%20and%20magnetic%20properties%20of%20perovskite%20structure%20LaCr1%E2%88%92xMnxO3%20(x%20=%200.1,%200.2,%20and%200.3)&rft.jtitle=CrystEngComm&rft.au=Wang,%20Shan&rft.date=2018&rft.volume=20&rft.issue=22&rft.spage=3034&rft.epage=3042&rft.pages=3034-3042&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c8ce00421h&rft_dat=%3Cproquest%3E2049903317%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049903317&rft_id=info:pmid/&rfr_iscdi=true |