Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)

We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the dopin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2018, Vol.20 (22), p.3034-3042
Hauptverfasser: Wang, Shan, Wu, Xiaofeng, Long, Yuan, Zhang, Chenyang, Cui, Xiaoqiang, Lu, Dayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3042
container_issue 22
container_start_page 3034
container_title CrystEngComm
container_volume 20
creator Wang, Shan
Wu, Xiaofeng
Long, Yuan
Zhang, Chenyang
Cui, Xiaoqiang
Lu, Dayong
description We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.
doi_str_mv 10.1039/c8ce00421h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2049903317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049903317</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-8e65b5fd7007fd0809df82fdefb56a2fa5c7f646cdf037fbd999ab75a03627773</originalsourceid><addsrcrecordid>eNpFUM1KAzEYDIJgrV58goAXhd36JdlNNgcPUtQKlV70XLKbpN3abmqSlfYBBM8-ok9ioIKXmbnMD4PQBYERASZvmqoxAAUlyyM0IAXneQWMnaDTEFYApCAEBuhzstfexaXxG7XGYd8lGdqQ4Y3z26Vbu8U-wyH6vom9NxlWncYbtehMbBu89W5rfGxNwM7iJN1HeGuj-TfgqRp78vP1vXvudjOGr3b4Fqd9WQJ6SIMRuz5Dx1atgzn_4yF6fbh_GU_y6ezxaXw3zRe04jGvDC_r0moBIKyGCqS2FbXa2LrkilpVNsLygjfaAhO21lJKVYtSAeNUCMGG6PKQm5a_9ybE-cr1vkuVcwqFlOkfItgvk6hhDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049903317</pqid></control><display><type>article</type><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</creator><creatorcontrib>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</creatorcontrib><description>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/c8ce00421h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Coercivity ; Crystallization ; Cubic lattice ; Doping ; Ferromagnetic materials ; Field strength ; Hydrothermal crystal growth ; Hysteresis ; Lattice parameters ; Magnetic properties ; Magnetization ; Mathematical morphology ; Morphology ; Perovskite structure ; Perovskites ; Phase transitions ; Single crystals ; Synthesis ; Temperature dependence ; Transition points</subject><ispartof>CrystEngComm, 2018, Vol.20 (22), p.3034-3042</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Long, Yuan</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Lu, Dayong</creatorcontrib><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><title>CrystEngComm</title><description>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</description><subject>Antiferromagnetism</subject><subject>Coercivity</subject><subject>Crystallization</subject><subject>Cubic lattice</subject><subject>Doping</subject><subject>Ferromagnetic materials</subject><subject>Field strength</subject><subject>Hydrothermal crystal growth</subject><subject>Hysteresis</subject><subject>Lattice parameters</subject><subject>Magnetic properties</subject><subject>Magnetization</subject><subject>Mathematical morphology</subject><subject>Morphology</subject><subject>Perovskite structure</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Single crystals</subject><subject>Synthesis</subject><subject>Temperature dependence</subject><subject>Transition points</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KAzEYDIJgrV58goAXhd36JdlNNgcPUtQKlV70XLKbpN3abmqSlfYBBM8-ok9ioIKXmbnMD4PQBYERASZvmqoxAAUlyyM0IAXneQWMnaDTEFYApCAEBuhzstfexaXxG7XGYd8lGdqQ4Y3z26Vbu8U-wyH6vom9NxlWncYbtehMbBu89W5rfGxNwM7iJN1HeGuj-TfgqRp78vP1vXvudjOGr3b4Fqd9WQJ6SIMRuz5Dx1atgzn_4yF6fbh_GU_y6ezxaXw3zRe04jGvDC_r0moBIKyGCqS2FbXa2LrkilpVNsLygjfaAhO21lJKVYtSAeNUCMGG6PKQm5a_9ybE-cr1vkuVcwqFlOkfItgvk6hhDA</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Wang, Shan</creator><creator>Wu, Xiaofeng</creator><creator>Long, Yuan</creator><creator>Zhang, Chenyang</creator><creator>Cui, Xiaoqiang</creator><creator>Lu, Dayong</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>2018</creationdate><title>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</title><author>Wang, Shan ; Wu, Xiaofeng ; Long, Yuan ; Zhang, Chenyang ; Cui, Xiaoqiang ; Lu, Dayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-8e65b5fd7007fd0809df82fdefb56a2fa5c7f646cdf037fbd999ab75a03627773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antiferromagnetism</topic><topic>Coercivity</topic><topic>Crystallization</topic><topic>Cubic lattice</topic><topic>Doping</topic><topic>Ferromagnetic materials</topic><topic>Field strength</topic><topic>Hydrothermal crystal growth</topic><topic>Hysteresis</topic><topic>Lattice parameters</topic><topic>Magnetic properties</topic><topic>Magnetization</topic><topic>Mathematical morphology</topic><topic>Morphology</topic><topic>Perovskite structure</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Single crystals</topic><topic>Synthesis</topic><topic>Temperature dependence</topic><topic>Transition points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shan</creatorcontrib><creatorcontrib>Wu, Xiaofeng</creatorcontrib><creatorcontrib>Long, Yuan</creatorcontrib><creatorcontrib>Zhang, Chenyang</creatorcontrib><creatorcontrib>Cui, Xiaoqiang</creatorcontrib><creatorcontrib>Lu, Dayong</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shan</au><au>Wu, Xiaofeng</au><au>Long, Yuan</au><au>Zhang, Chenyang</au><au>Cui, Xiaoqiang</au><au>Lu, Dayong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)</atitle><jtitle>CrystEngComm</jtitle><date>2018</date><risdate>2018</risdate><volume>20</volume><issue>22</issue><spage>3034</spage><epage>3042</epage><pages>3034-3042</pages><eissn>1466-8033</eissn><abstract>We report the synthesis of LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3) single crystal microcubes via a mild hydrothermal method. The as-synthesized LaCr1−xMnxO3 samples were crystallized into the Pnma space group with uniform particle size and cubic morphology. The lattice parameters increased as the doping level of Mn increased from x = 0.1 to 0.3. XPS characterization of the samples showed that the valence states of Cr and Mn are both +3. A temperature-dependent magnetization study indicated a clear transition point of canted-antiferromagnetic to paramagnetic behaviour from 3–380 K, with their Neel transition points located between 246–265 K. The isothermal magnetic hysteresis of the LaCr1−xMnxO3 samples show that they possess the same coercive field strength but a linear increment of remnant magnetization with increasing Mn doping level. A temperature-dependent magnetic entropy change study indicated that the samples show a maximum ΔS of 0.4247 J kg−1 K−1 for LaCr0.7Mn0.3O3 at 40 K for ΔH = 6 T. Arrott plots of M2versus H/M indicate a second-order magnetic phase transition for all of the as-synthesized LaCr1−xMnxO3 samples. All these results suggest that the promotion of magnetization was successfully performed by hydrothermally doping Mn in a LaCrO3 lattice. This study provides a design and synthesis strategy to increase the ferromagnetic exchange in weak magnetization materials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ce00421h</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof CrystEngComm, 2018, Vol.20 (22), p.3034-3042
issn 1466-8033
language eng
recordid cdi_proquest_journals_2049903317
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antiferromagnetism
Coercivity
Crystallization
Cubic lattice
Doping
Ferromagnetic materials
Field strength
Hydrothermal crystal growth
Hysteresis
Lattice parameters
Magnetic properties
Magnetization
Mathematical morphology
Morphology
Perovskite structure
Perovskites
Phase transitions
Single crystals
Synthesis
Temperature dependence
Transition points
title Hydrothermal synthesis, morphology, structure, and magnetic properties of perovskite structure LaCr1−xMnxO3 (x = 0.1, 0.2, and 0.3)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis,%20morphology,%20structure,%20and%20magnetic%20properties%20of%20perovskite%20structure%20LaCr1%E2%88%92xMnxO3%20(x%20=%200.1,%200.2,%20and%200.3)&rft.jtitle=CrystEngComm&rft.au=Wang,%20Shan&rft.date=2018&rft.volume=20&rft.issue=22&rft.spage=3034&rft.epage=3042&rft.pages=3034-3042&rft.eissn=1466-8033&rft_id=info:doi/10.1039/c8ce00421h&rft_dat=%3Cproquest%3E2049903317%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049903317&rft_id=info:pmid/&rfr_iscdi=true