Quantum Landauer erasure with a molecular nanomagnet

The erasure of a bit of information is an irreversible operation whose minimal entropy production of k B  ln 2 is set by the Landauer limit 1 . This limit has been verified in a variety of classical systems, including particles in traps 2 , 3 and nanomagnets 4 . Here, we extend it to the quantum rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2018-06, Vol.14 (6), p.565-568
Hauptverfasser: Gaudenzi, R., Burzurí, E., Maegawa, S., van der Zant, H. S. J., Luis, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue 6
container_start_page 565
container_title Nature physics
container_volume 14
creator Gaudenzi, R.
Burzurí, E.
Maegawa, S.
van der Zant, H. S. J.
Luis, F.
description The erasure of a bit of information is an irreversible operation whose minimal entropy production of k B  ln 2 is set by the Landauer limit 1 . This limit has been verified in a variety of classical systems, including particles in traps 2 , 3 and nanomagnets 4 . Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy–time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system. Erasing a bit of information has a fundamental, minimal energy cost that is given by the Landauer limit. The erasure of quantum information from a quantum-spin memory register encoded in a molecular nanomagnet is shown to obey the same principle.
doi_str_mv 10.1038/s41567-018-0070-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049881398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049881398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-875493b32e19f42a8b6df7ec2944c8d17c8d1b564dcfbc6482fe6226ca92740b3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuC62gup7ksZfAGBRF0HdI0HWdo0zFpEN_eloqu3JxzFt__H_gQuqTkmhKubhLQUkhMqMKESILlEVpRCSVmoOjx7y35KTpLaU8IMEH5CsFLtmHMfVHZ0NjsY-GjTTn64nM3vhe26IfOu9zZWAQbht5ugx_P0Ulru-QvfvYavd3fvW4ecfX88LS5rbADpkesZAma15x5qltgVtWiaaV3TAM41VA5j7oU0Li2dgIUa71gTDirmQRS8zW6WnoPcfjIPo1mP-QYppeGEdBKUa7VRNGFcnFIKfrWHOKut_HLUGJmOWaRYyY5ZpZj5JRhSyZNbNj6-Nf8f-gbDUFmRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049881398</pqid></control><display><type>article</type><title>Quantum Landauer erasure with a molecular nanomagnet</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gaudenzi, R. ; Burzurí, E. ; Maegawa, S. ; van der Zant, H. S. J. ; Luis, F.</creator><creatorcontrib>Gaudenzi, R. ; Burzurí, E. ; Maegawa, S. ; van der Zant, H. S. J. ; Luis, F.</creatorcontrib><description>The erasure of a bit of information is an irreversible operation whose minimal entropy production of k B  ln 2 is set by the Landauer limit 1 . This limit has been verified in a variety of classical systems, including particles in traps 2 , 3 and nanomagnets 4 . Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy–time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system. Erasing a bit of information has a fundamental, minimal energy cost that is given by the Landauer limit. The erasure of quantum information from a quantum-spin memory register encoded in a molecular nanomagnet is shown to obey the same principle.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0070-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/259 ; 639/766/36 ; 639/766/483 ; 639/766/530/951 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Energy ; Energy efficiency ; Entropy ; Letter ; Magnetic fields ; Mathematical and Computational Physics ; Memory devices ; Molecular ; Molecular chains ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum theory ; Spin dynamics ; Theoretical</subject><ispartof>Nature physics, 2018-06, Vol.14 (6), p.565-568</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-875493b32e19f42a8b6df7ec2944c8d17c8d1b564dcfbc6482fe6226ca92740b3</citedby><cites>FETCH-LOGICAL-c429t-875493b32e19f42a8b6df7ec2944c8d17c8d1b564dcfbc6482fe6226ca92740b3</cites><orcidid>0000-0002-0762-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0070-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0070-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gaudenzi, R.</creatorcontrib><creatorcontrib>Burzurí, E.</creatorcontrib><creatorcontrib>Maegawa, S.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><creatorcontrib>Luis, F.</creatorcontrib><title>Quantum Landauer erasure with a molecular nanomagnet</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The erasure of a bit of information is an irreversible operation whose minimal entropy production of k B  ln 2 is set by the Landauer limit 1 . This limit has been verified in a variety of classical systems, including particles in traps 2 , 3 and nanomagnets 4 . Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy–time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system. Erasing a bit of information has a fundamental, minimal energy cost that is given by the Landauer limit. The erasure of quantum information from a quantum-spin memory register encoded in a molecular nanomagnet is shown to obey the same principle.</description><subject>639/766/259</subject><subject>639/766/36</subject><subject>639/766/483</subject><subject>639/766/530/951</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Entropy</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Memory devices</subject><subject>Molecular</subject><subject>Molecular chains</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum theory</subject><subject>Spin dynamics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUhoMoOI4-gLuC62gup7ksZfAGBRF0HdI0HWdo0zFpEN_eloqu3JxzFt__H_gQuqTkmhKubhLQUkhMqMKESILlEVpRCSVmoOjx7y35KTpLaU8IMEH5CsFLtmHMfVHZ0NjsY-GjTTn64nM3vhe26IfOu9zZWAQbht5ugx_P0Ulru-QvfvYavd3fvW4ecfX88LS5rbADpkesZAma15x5qltgVtWiaaV3TAM41VA5j7oU0Li2dgIUa71gTDirmQRS8zW6WnoPcfjIPo1mP-QYppeGEdBKUa7VRNGFcnFIKfrWHOKut_HLUGJmOWaRYyY5ZpZj5JRhSyZNbNj6-Nf8f-gbDUFmRA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gaudenzi, R.</creator><creator>Burzurí, E.</creator><creator>Maegawa, S.</creator><creator>van der Zant, H. S. J.</creator><creator>Luis, F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0762-6351</orcidid></search><sort><creationdate>20180601</creationdate><title>Quantum Landauer erasure with a molecular nanomagnet</title><author>Gaudenzi, R. ; Burzurí, E. ; Maegawa, S. ; van der Zant, H. S. J. ; Luis, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-875493b32e19f42a8b6df7ec2944c8d17c8d1b564dcfbc6482fe6226ca92740b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/766/259</topic><topic>639/766/36</topic><topic>639/766/483</topic><topic>639/766/530/951</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Entropy</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Memory devices</topic><topic>Molecular</topic><topic>Molecular chains</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum theory</topic><topic>Spin dynamics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudenzi, R.</creatorcontrib><creatorcontrib>Burzurí, E.</creatorcontrib><creatorcontrib>Maegawa, S.</creatorcontrib><creatorcontrib>van der Zant, H. S. J.</creatorcontrib><creatorcontrib>Luis, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudenzi, R.</au><au>Burzurí, E.</au><au>Maegawa, S.</au><au>van der Zant, H. S. J.</au><au>Luis, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Landauer erasure with a molecular nanomagnet</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>565</spage><epage>568</epage><pages>565-568</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The erasure of a bit of information is an irreversible operation whose minimal entropy production of k B  ln 2 is set by the Landauer limit 1 . This limit has been verified in a variety of classical systems, including particles in traps 2 , 3 and nanomagnets 4 . Here, we extend it to the quantum realm by using a crystal of molecular nanomagnets as a quantum spin memory and showing that its erasure is still governed by the Landauer principle. In contrast to classical systems, maximal energy efficiency is achieved while preserving fast operation owing to its high-speed spin dynamics. The performance of our spin register in terms of energy–time cost is orders of magnitude better than existing memory devices to date. The result shows that thermodynamics sets a limit on the energy cost of certain quantum operations and illustrates a way to enhance classical computations by using a quantum system. Erasing a bit of information has a fundamental, minimal energy cost that is given by the Landauer limit. The erasure of quantum information from a quantum-spin memory register encoded in a molecular nanomagnet is shown to obey the same principle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0070-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0762-6351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2018-06, Vol.14 (6), p.565-568
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2049881398
source Springer Nature - Connect here FIRST to enable access; SpringerLink Journals - AutoHoldings
subjects 639/766/259
639/766/36
639/766/483
639/766/530/951
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Energy
Energy efficiency
Entropy
Letter
Magnetic fields
Mathematical and Computational Physics
Memory devices
Molecular
Molecular chains
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum theory
Spin dynamics
Theoretical
title Quantum Landauer erasure with a molecular nanomagnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Landauer%20erasure%20with%20a%20molecular%20nanomagnet&rft.jtitle=Nature%20physics&rft.au=Gaudenzi,%20R.&rft.date=2018-06-01&rft.volume=14&rft.issue=6&rft.spage=565&rft.epage=568&rft.pages=565-568&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0070-7&rft_dat=%3Cproquest_cross%3E2049881398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049881398&rft_id=info:pmid/&rfr_iscdi=true