Network structure from rich but noisy data
Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and...
Gespeichert in:
Veröffentlicht in: | Nature physics 2018-06, Vol.14 (6), p.542-545 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 545 |
---|---|
container_issue | 6 |
container_start_page | 542 |
container_title | Nature physics |
container_volume | 14 |
creator | Newman, M. E. J. |
description | Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error
1
–
7
. Accurate analysis and understanding of networked systems requires a way of estimating the true structure of networks from such rich but noisy data
8
–
15
. Here we describe a technique that allows us to make optimal estimates of network structure from complex data in arbitrary formats, including cases where there may be measurements of many different types, repeated observations, contradictory observations, annotations or metadata, or missing data. We give example applications to two different social networks, one derived from face-to-face interactions and one from self-reported friendships.
A technique allows optimal inference of the structure of a network when the available observed data are rich but noisy, incomplete or otherwise unreliable. |
doi_str_mv | 10.1038/s41567-018-0076-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049880006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049880006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-886dc3126c7d8365cfe5608e38fe3bed5f8e21afc2082d1ed12a9498466cccd13</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AOyH6XjKTeV1K0SoU3eg6pPnQqbZTkwzSf-8MI7py9e7i3PvgMHaOcIUg6TqVWKmaAxIHqBXHAzbBuqy4KAkPf3Mtj9lJSmuAUiiUE3b56PNXG9-LlGNncxd9EWK7KWJj34pVl4tt26R94Uw2p-womI_kz37ulL3c3T7P7_nyafEwv1lyK0llTqSclSiUrR1JVdngKwXkJQUvV95VgbxAE6wAEg69Q2Fm5YxKpay1DuWUXYy7u9h-dj5lvW67uO1fagE9SACgegpHysY2peiD3sVmY-JeI-hBiR6V6F6JHpToYVmMndSz21cf_5b_L30DcyViwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049880006</pqid></control><display><type>article</type><title>Network structure from rich but noisy data</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Newman, M. E. J.</creator><creatorcontrib>Newman, M. E. J.</creatorcontrib><description>Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error
1
–
7
. Accurate analysis and understanding of networked systems requires a way of estimating the true structure of networks from such rich but noisy data
8
–
15
. Here we describe a technique that allows us to make optimal estimates of network structure from complex data in arbitrary formats, including cases where there may be measurements of many different types, repeated observations, contradictory observations, annotations or metadata, or missing data. We give example applications to two different social networks, one derived from face-to-face interactions and one from self-reported friendships.
A technique allows optimal inference of the structure of a network when the available observed data are rich but noisy, incomplete or otherwise unreliable.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0076-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 639/705/531 ; 639/766/530/2801 ; Annotations ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Empirical analysis ; Letter ; Mathematical and Computational Physics ; Missing data ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Social networks ; Theoretical</subject><ispartof>Nature physics, 2018-06, Vol.14 (6), p.542-545</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-886dc3126c7d8365cfe5608e38fe3bed5f8e21afc2082d1ed12a9498466cccd13</citedby><cites>FETCH-LOGICAL-c386t-886dc3126c7d8365cfe5608e38fe3bed5f8e21afc2082d1ed12a9498466cccd13</cites><orcidid>0000-0002-0907-1660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0076-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0076-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Newman, M. E. J.</creatorcontrib><title>Network structure from rich but noisy data</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error
1
–
7
. Accurate analysis and understanding of networked systems requires a way of estimating the true structure of networks from such rich but noisy data
8
–
15
. Here we describe a technique that allows us to make optimal estimates of network structure from complex data in arbitrary formats, including cases where there may be measurements of many different types, repeated observations, contradictory observations, annotations or metadata, or missing data. We give example applications to two different social networks, one derived from face-to-face interactions and one from self-reported friendships.
A technique allows optimal inference of the structure of a network when the available observed data are rich but noisy, incomplete or otherwise unreliable.</description><subject>639/705/1042</subject><subject>639/705/531</subject><subject>639/766/530/2801</subject><subject>Annotations</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Empirical analysis</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Missing data</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Social networks</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2AOyH6XjKTeV1K0SoU3eg6pPnQqbZTkwzSf-8MI7py9e7i3PvgMHaOcIUg6TqVWKmaAxIHqBXHAzbBuqy4KAkPf3Mtj9lJSmuAUiiUE3b56PNXG9-LlGNncxd9EWK7KWJj34pVl4tt26R94Uw2p-womI_kz37ulL3c3T7P7_nyafEwv1lyK0llTqSclSiUrR1JVdngKwXkJQUvV95VgbxAE6wAEg69Q2Fm5YxKpay1DuWUXYy7u9h-dj5lvW67uO1fagE9SACgegpHysY2peiD3sVmY-JeI-hBiR6V6F6JHpToYVmMndSz21cf_5b_L30DcyViwA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Newman, M. E. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0907-1660</orcidid></search><sort><creationdate>20180601</creationdate><title>Network structure from rich but noisy data</title><author>Newman, M. E. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-886dc3126c7d8365cfe5608e38fe3bed5f8e21afc2082d1ed12a9498466cccd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/705/1042</topic><topic>639/705/531</topic><topic>639/766/530/2801</topic><topic>Annotations</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Empirical analysis</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Missing data</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Social networks</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, M. E. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, M. E. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network structure from rich but noisy data</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>542</spage><epage>545</epage><pages>542-545</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Driven by growing interest across the sciences, a large number of empirical studies have been conducted in recent years of the structure of networks ranging from the Internet and the World Wide Web to biological networks and social networks. The data produced by these experiments are often rich and multimodal, yet at the same time they may contain substantial measurement error
1
–
7
. Accurate analysis and understanding of networked systems requires a way of estimating the true structure of networks from such rich but noisy data
8
–
15
. Here we describe a technique that allows us to make optimal estimates of network structure from complex data in arbitrary formats, including cases where there may be measurements of many different types, repeated observations, contradictory observations, annotations or metadata, or missing data. We give example applications to two different social networks, one derived from face-to-face interactions and one from self-reported friendships.
A technique allows optimal inference of the structure of a network when the available observed data are rich but noisy, incomplete or otherwise unreliable.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0076-1</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0907-1660</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2018-06, Vol.14 (6), p.542-545 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2049880006 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/705/1042 639/705/531 639/766/530/2801 Annotations Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Empirical analysis Letter Mathematical and Computational Physics Missing data Molecular Optical and Plasma Physics Physics Physics and Astronomy Social networks Theoretical |
title | Network structure from rich but noisy data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20structure%20from%20rich%20but%20noisy%20data&rft.jtitle=Nature%20physics&rft.au=Newman,%20M.%20E.%20J.&rft.date=2018-06-01&rft.volume=14&rft.issue=6&rft.spage=542&rft.epage=545&rft.pages=542-545&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0076-1&rft_dat=%3Cproquest_cross%3E2049880006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049880006&rft_id=info:pmid/&rfr_iscdi=true |