Optimal Spatial-Dynamic Management of Stochastic Species Invasions
Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short an...
Gespeichert in:
Veröffentlicht in: | Environmental & resource economics 2018-06, Vol.70 (2), p.403-427 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 2 |
container_start_page | 403 |
container_title | Environmental & resource economics |
container_volume | 70 |
creator | Hall, Kim Meyer Albers, Heidi J. Alkaee Taleghan, Majid Dietterich, Thomas G. |
description | Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short and long-distance dispersal, directionality in spread, and network geometry. In terms of uncertainty and dynamics, this framework incorporates several sources of stochasticity, decisions with multi-year implications, and temporal ecological processes. This paper employs a unique Markov decision process planning algorithm and a Monte Carlo simulation of the stochastic system to explore the spatial-dynamic optimal policy for a river network facing a bioinvasion, with Tamarisk as an example. In addition to exploring the spatial, stochastic, and dynamic aspects of management of invasions, the results demonstrate how the
interaction
of spatial and multi-period processes contributes to finding the optimal policy. Those interactions prove critical in determining the right management tool, in the right location, at the right time, which informs the management implications drawn from simpler frameworks. In particular, as compared to other modeling framework’s policy prescriptions, the framework here finds more use of the management tool restoration and more management in highly connected locations, which leads to a less invaded system over time. |
doi_str_mv | 10.1007/s10640-017-0127-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049796754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049796754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-c121ede4f07f88998a0233342732e116b287299345ae17ee4ea325080422aabe3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC5-jkzyabo1arhUoP1XNI19m6pc2uSSr025uygicPwxzmvTe8HyHXDG4ZgL6LDJQECkzn4ZqqEzJipRaUlcBPyQgMl1RJBefkIsYNABgt1Yg8LPrU7ty2WPYutW5LHw_e7dq6eHXerXGHPhVdUyxTV3-6mPJh2WPdYixm_tvFtvPxkpw1bhvx6nePyfv06W3yQueL59nkfk5rUbFEa8YZfqBsQDdVZUzlgAshJNeCI2NqxSvNjRGydMg0okQneAkVSM6dW6EYk5shtw_d1x5jsptuH3x-aTlIo43SpcwqNqjq0MUYsLF9yAXDwTKwR1R2QGUzKntEZVX28METs9avMfwl_2_6AdroagA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049796754</pqid></control><display><type>article</type><title>Optimal Spatial-Dynamic Management of Stochastic Species Invasions</title><source>Springer Nature - Complete Springer Journals</source><creator>Hall, Kim Meyer ; Albers, Heidi J. ; Alkaee Taleghan, Majid ; Dietterich, Thomas G.</creator><creatorcontrib>Hall, Kim Meyer ; Albers, Heidi J. ; Alkaee Taleghan, Majid ; Dietterich, Thomas G.</creatorcontrib><description>Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short and long-distance dispersal, directionality in spread, and network geometry. In terms of uncertainty and dynamics, this framework incorporates several sources of stochasticity, decisions with multi-year implications, and temporal ecological processes. This paper employs a unique Markov decision process planning algorithm and a Monte Carlo simulation of the stochastic system to explore the spatial-dynamic optimal policy for a river network facing a bioinvasion, with Tamarisk as an example. In addition to exploring the spatial, stochastic, and dynamic aspects of management of invasions, the results demonstrate how the
interaction
of spatial and multi-period processes contributes to finding the optimal policy. Those interactions prove critical in determining the right management tool, in the right location, at the right time, which informs the management implications drawn from simpler frameworks. In particular, as compared to other modeling framework’s policy prescriptions, the framework here finds more use of the management tool restoration and more management in highly connected locations, which leads to a less invaded system over time.</description><identifier>ISSN: 0924-6460</identifier><identifier>EISSN: 1573-1502</identifier><identifier>DOI: 10.1007/s10640-017-0127-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioinvasion ; Biological invasions ; Computer simulation ; Decisions ; Dispersal ; Economic Policy ; Economics ; Economics and Finance ; Environmental Economics ; Environmental Law/Policy/Ecojustice ; Environmental Management ; Geometry ; Introduced species ; Invasive ; Invasive species ; Management ; Management decisions ; Markov processes ; Monte Carlo simulation ; Nonnative species ; Optimization ; Prescription drugs ; Process planning ; Restoration ; River networks ; Rivers ; Simulation ; Stochasticity ; Uncertainty</subject><ispartof>Environmental & resource economics, 2018-06, Vol.70 (2), p.403-427</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Environmental and Resource Economics is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-c121ede4f07f88998a0233342732e116b287299345ae17ee4ea325080422aabe3</citedby><cites>FETCH-LOGICAL-c381t-c121ede4f07f88998a0233342732e116b287299345ae17ee4ea325080422aabe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10640-017-0127-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10640-017-0127-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hall, Kim Meyer</creatorcontrib><creatorcontrib>Albers, Heidi J.</creatorcontrib><creatorcontrib>Alkaee Taleghan, Majid</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><title>Optimal Spatial-Dynamic Management of Stochastic Species Invasions</title><title>Environmental & resource economics</title><addtitle>Environ Resource Econ</addtitle><description>Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short and long-distance dispersal, directionality in spread, and network geometry. In terms of uncertainty and dynamics, this framework incorporates several sources of stochasticity, decisions with multi-year implications, and temporal ecological processes. This paper employs a unique Markov decision process planning algorithm and a Monte Carlo simulation of the stochastic system to explore the spatial-dynamic optimal policy for a river network facing a bioinvasion, with Tamarisk as an example. In addition to exploring the spatial, stochastic, and dynamic aspects of management of invasions, the results demonstrate how the
interaction
of spatial and multi-period processes contributes to finding the optimal policy. Those interactions prove critical in determining the right management tool, in the right location, at the right time, which informs the management implications drawn from simpler frameworks. In particular, as compared to other modeling framework’s policy prescriptions, the framework here finds more use of the management tool restoration and more management in highly connected locations, which leads to a less invaded system over time.</description><subject>Bioinvasion</subject><subject>Biological invasions</subject><subject>Computer simulation</subject><subject>Decisions</subject><subject>Dispersal</subject><subject>Economic Policy</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Environmental Economics</subject><subject>Environmental Law/Policy/Ecojustice</subject><subject>Environmental Management</subject><subject>Geometry</subject><subject>Introduced species</subject><subject>Invasive</subject><subject>Invasive species</subject><subject>Management</subject><subject>Management decisions</subject><subject>Markov processes</subject><subject>Monte Carlo simulation</subject><subject>Nonnative species</subject><subject>Optimization</subject><subject>Prescription drugs</subject><subject>Process planning</subject><subject>Restoration</subject><subject>River networks</subject><subject>Rivers</subject><subject>Simulation</subject><subject>Stochasticity</subject><subject>Uncertainty</subject><issn>0924-6460</issn><issn>1573-1502</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuC5-jkzyabo1arhUoP1XNI19m6pc2uSSr025uygicPwxzmvTe8HyHXDG4ZgL6LDJQECkzn4ZqqEzJipRaUlcBPyQgMl1RJBefkIsYNABgt1Yg8LPrU7ty2WPYutW5LHw_e7dq6eHXerXGHPhVdUyxTV3-6mPJh2WPdYixm_tvFtvPxkpw1bhvx6nePyfv06W3yQueL59nkfk5rUbFEa8YZfqBsQDdVZUzlgAshJNeCI2NqxSvNjRGydMg0okQneAkVSM6dW6EYk5shtw_d1x5jsptuH3x-aTlIo43SpcwqNqjq0MUYsLF9yAXDwTKwR1R2QGUzKntEZVX28METs9avMfwl_2_6AdroagA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hall, Kim Meyer</creator><creator>Albers, Heidi J.</creator><creator>Alkaee Taleghan, Majid</creator><creator>Dietterich, Thomas G.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20180601</creationdate><title>Optimal Spatial-Dynamic Management of Stochastic Species Invasions</title><author>Hall, Kim Meyer ; Albers, Heidi J. ; Alkaee Taleghan, Majid ; Dietterich, Thomas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-c121ede4f07f88998a0233342732e116b287299345ae17ee4ea325080422aabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bioinvasion</topic><topic>Biological invasions</topic><topic>Computer simulation</topic><topic>Decisions</topic><topic>Dispersal</topic><topic>Economic Policy</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Environmental Economics</topic><topic>Environmental Law/Policy/Ecojustice</topic><topic>Environmental Management</topic><topic>Geometry</topic><topic>Introduced species</topic><topic>Invasive</topic><topic>Invasive species</topic><topic>Management</topic><topic>Management decisions</topic><topic>Markov processes</topic><topic>Monte Carlo simulation</topic><topic>Nonnative species</topic><topic>Optimization</topic><topic>Prescription drugs</topic><topic>Process planning</topic><topic>Restoration</topic><topic>River networks</topic><topic>Rivers</topic><topic>Simulation</topic><topic>Stochasticity</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Kim Meyer</creatorcontrib><creatorcontrib>Albers, Heidi J.</creatorcontrib><creatorcontrib>Alkaee Taleghan, Majid</creatorcontrib><creatorcontrib>Dietterich, Thomas G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental & resource economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Kim Meyer</au><au>Albers, Heidi J.</au><au>Alkaee Taleghan, Majid</au><au>Dietterich, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Spatial-Dynamic Management of Stochastic Species Invasions</atitle><jtitle>Environmental & resource economics</jtitle><stitle>Environ Resource Econ</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>70</volume><issue>2</issue><spage>403</spage><epage>427</epage><pages>403-427</pages><issn>0924-6460</issn><eissn>1573-1502</eissn><abstract>Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short and long-distance dispersal, directionality in spread, and network geometry. In terms of uncertainty and dynamics, this framework incorporates several sources of stochasticity, decisions with multi-year implications, and temporal ecological processes. This paper employs a unique Markov decision process planning algorithm and a Monte Carlo simulation of the stochastic system to explore the spatial-dynamic optimal policy for a river network facing a bioinvasion, with Tamarisk as an example. In addition to exploring the spatial, stochastic, and dynamic aspects of management of invasions, the results demonstrate how the
interaction
of spatial and multi-period processes contributes to finding the optimal policy. Those interactions prove critical in determining the right management tool, in the right location, at the right time, which informs the management implications drawn from simpler frameworks. In particular, as compared to other modeling framework’s policy prescriptions, the framework here finds more use of the management tool restoration and more management in highly connected locations, which leads to a less invaded system over time.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10640-017-0127-6</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-6460 |
ispartof | Environmental & resource economics, 2018-06, Vol.70 (2), p.403-427 |
issn | 0924-6460 1573-1502 |
language | eng |
recordid | cdi_proquest_journals_2049796754 |
source | Springer Nature - Complete Springer Journals |
subjects | Bioinvasion Biological invasions Computer simulation Decisions Dispersal Economic Policy Economics Economics and Finance Environmental Economics Environmental Law/Policy/Ecojustice Environmental Management Geometry Introduced species Invasive Invasive species Management Management decisions Markov processes Monte Carlo simulation Nonnative species Optimization Prescription drugs Process planning Restoration River networks Rivers Simulation Stochasticity Uncertainty |
title | Optimal Spatial-Dynamic Management of Stochastic Species Invasions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Spatial-Dynamic%20Management%20of%20Stochastic%20Species%20Invasions&rft.jtitle=Environmental%20&%20resource%20economics&rft.au=Hall,%20Kim%20Meyer&rft.date=2018-06-01&rft.volume=70&rft.issue=2&rft.spage=403&rft.epage=427&rft.pages=403-427&rft.issn=0924-6460&rft.eissn=1573-1502&rft_id=info:doi/10.1007/s10640-017-0127-6&rft_dat=%3Cproquest_cross%3E2049796754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049796754&rft_id=info:pmid/&rfr_iscdi=true |