Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method
Summary Aiming to accurately simulate seismic dynamic response of rock masses using the numerical manifold method (NMM), boundary settings must be treated carefully. In this paper, 4 issues in boundary settings are investigated to improve the performance of NMM: (1) Nonreflecting boundaries includin...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2018-06, Vol.42 (9), p.1095-1122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1122 |
---|---|
container_issue | 9 |
container_start_page | 1095 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 42 |
creator | Yang, Yongtao Guo, Hongwei Fu, Xiaodong Zheng, Hong |
description | Summary
Aiming to accurately simulate seismic dynamic response of rock masses using the numerical manifold method (NMM), boundary settings must be treated carefully. In this paper, 4 issues in boundary settings are investigated to improve the performance of NMM: (1) Nonreflecting boundaries including the viscous boundary and viscoelastic boundary are considered; (2) A free‐field boundary is incorporated into NMM to accurately simulate external source wave motion; (3) A seismic input boundary is considered, and the force input method is introduced; and (4) A static‐dynamic unified boundary is incorporated for the convenience of transforming displacement boundary into other types of boundaries, such as nonreflecting boundaries and seismic input boundary. Several benchmark problems are solved to validate the improved NMM. Simulation results agree well with analytical ones, indicating that the improved NMM is able to simulate seismic dynamic response of rock masses reliably and correctly. |
doi_str_mv | 10.1002/nag.2786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049618318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049618318</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3166-e61e0420f4e31a2660da0cc1fdbba862a42faa09a248db9ba9b1079b488157d53</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvqbP5sk2MtWoWiFz0vk2S3TU12606C5Nu7bb0KAw_m_d4wPMZuBcwEQPxgcTOL57k8YxMBhYyKPEvO2QQSmUQFSHHJroh2AJAFd8LsoxtsjX7kpPu-sRvixnneb3VYNNQ1Fa9Hiwf1mvbOkuZosR2pIe4M96764h0SaeIDhfwxaodO-6bCNli2Ma6teaf7rauv2YXBlvTNn07Z5_PTx_IlWr-vXpeLdYSJkDLSUmhIYzCpTgTGUkKNUFXC1GWJuYwxjQ0iFBineV0WJRalgHlRpnkusnmdJVN2d7q79-570NSrnRt8-JtUDGkhRZ6EmbL7E1V5R-S1UXvfdKEMJUAd2lShTXVoM6DRCf1pWj3-y6m3xerI_wJbcneg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049618318</pqid></control><display><type>article</type><title>Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method</title><source>Access via Wiley Online Library</source><creator>Yang, Yongtao ; Guo, Hongwei ; Fu, Xiaodong ; Zheng, Hong</creator><creatorcontrib>Yang, Yongtao ; Guo, Hongwei ; Fu, Xiaodong ; Zheng, Hong</creatorcontrib><description>Summary
Aiming to accurately simulate seismic dynamic response of rock masses using the numerical manifold method (NMM), boundary settings must be treated carefully. In this paper, 4 issues in boundary settings are investigated to improve the performance of NMM: (1) Nonreflecting boundaries including the viscous boundary and viscoelastic boundary are considered; (2) A free‐field boundary is incorporated into NMM to accurately simulate external source wave motion; (3) A seismic input boundary is considered, and the force input method is introduced; and (4) A static‐dynamic unified boundary is incorporated for the convenience of transforming displacement boundary into other types of boundaries, such as nonreflecting boundaries and seismic input boundary. Several benchmark problems are solved to validate the improved NMM. Simulation results agree well with analytical ones, indicating that the improved NMM is able to simulate seismic dynamic response of rock masses reliably and correctly.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2786</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Boundaries ; boundary settings ; Computer simulation ; Dynamic response ; Manifolds ; Methods ; Nonreflecting boundaries ; numerical manifold method (NMM) ; Performance enhancement ; Response analysis ; rock masses ; Rocks ; Seismic analysis ; seismic dynamic response ; seismic input ; Seismic response ; Viscoelasticity ; Wave motion ; Waves</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2018-06, Vol.42 (9), p.1095-1122</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3166-e61e0420f4e31a2660da0cc1fdbba862a42faa09a248db9ba9b1079b488157d53</citedby><cites>FETCH-LOGICAL-a3166-e61e0420f4e31a2660da0cc1fdbba862a42faa09a248db9ba9b1079b488157d53</cites><orcidid>0000-0002-8108-3009 ; 0000-0002-3400-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.2786$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.2786$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Yang, Yongtao</creatorcontrib><creatorcontrib>Guo, Hongwei</creatorcontrib><creatorcontrib>Fu, Xiaodong</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><title>Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method</title><title>International journal for numerical and analytical methods in geomechanics</title><description>Summary
Aiming to accurately simulate seismic dynamic response of rock masses using the numerical manifold method (NMM), boundary settings must be treated carefully. In this paper, 4 issues in boundary settings are investigated to improve the performance of NMM: (1) Nonreflecting boundaries including the viscous boundary and viscoelastic boundary are considered; (2) A free‐field boundary is incorporated into NMM to accurately simulate external source wave motion; (3) A seismic input boundary is considered, and the force input method is introduced; and (4) A static‐dynamic unified boundary is incorporated for the convenience of transforming displacement boundary into other types of boundaries, such as nonreflecting boundaries and seismic input boundary. Several benchmark problems are solved to validate the improved NMM. Simulation results agree well with analytical ones, indicating that the improved NMM is able to simulate seismic dynamic response of rock masses reliably and correctly.</description><subject>Boundaries</subject><subject>boundary settings</subject><subject>Computer simulation</subject><subject>Dynamic response</subject><subject>Manifolds</subject><subject>Methods</subject><subject>Nonreflecting boundaries</subject><subject>numerical manifold method (NMM)</subject><subject>Performance enhancement</subject><subject>Response analysis</subject><subject>rock masses</subject><subject>Rocks</subject><subject>Seismic analysis</subject><subject>seismic dynamic response</subject><subject>seismic input</subject><subject>Seismic response</subject><subject>Viscoelasticity</subject><subject>Wave motion</subject><subject>Waves</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbBj7DgxUvqbP5sk2MtWoWiFz0vk2S3TU12606C5Nu7bb0KAw_m_d4wPMZuBcwEQPxgcTOL57k8YxMBhYyKPEvO2QQSmUQFSHHJroh2AJAFd8LsoxtsjX7kpPu-sRvixnneb3VYNNQ1Fa9Hiwf1mvbOkuZosR2pIe4M96764h0SaeIDhfwxaodO-6bCNli2Ma6teaf7rauv2YXBlvTNn07Z5_PTx_IlWr-vXpeLdYSJkDLSUmhIYzCpTgTGUkKNUFXC1GWJuYwxjQ0iFBineV0WJRalgHlRpnkusnmdJVN2d7q79-570NSrnRt8-JtUDGkhRZ6EmbL7E1V5R-S1UXvfdKEMJUAd2lShTXVoM6DRCf1pWj3-y6m3xerI_wJbcneg</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Yang, Yongtao</creator><creator>Guo, Hongwei</creator><creator>Fu, Xiaodong</creator><creator>Zheng, Hong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8108-3009</orcidid><orcidid>https://orcid.org/0000-0002-3400-0549</orcidid></search><sort><creationdate>20180625</creationdate><title>Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method</title><author>Yang, Yongtao ; Guo, Hongwei ; Fu, Xiaodong ; Zheng, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3166-e61e0420f4e31a2660da0cc1fdbba862a42faa09a248db9ba9b1079b488157d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundaries</topic><topic>boundary settings</topic><topic>Computer simulation</topic><topic>Dynamic response</topic><topic>Manifolds</topic><topic>Methods</topic><topic>Nonreflecting boundaries</topic><topic>numerical manifold method (NMM)</topic><topic>Performance enhancement</topic><topic>Response analysis</topic><topic>rock masses</topic><topic>Rocks</topic><topic>Seismic analysis</topic><topic>seismic dynamic response</topic><topic>seismic input</topic><topic>Seismic response</topic><topic>Viscoelasticity</topic><topic>Wave motion</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongtao</creatorcontrib><creatorcontrib>Guo, Hongwei</creatorcontrib><creatorcontrib>Fu, Xiaodong</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongtao</au><au>Guo, Hongwei</au><au>Fu, Xiaodong</au><au>Zheng, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2018-06-25</date><risdate>2018</risdate><volume>42</volume><issue>9</issue><spage>1095</spage><epage>1122</epage><pages>1095-1122</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>Summary
Aiming to accurately simulate seismic dynamic response of rock masses using the numerical manifold method (NMM), boundary settings must be treated carefully. In this paper, 4 issues in boundary settings are investigated to improve the performance of NMM: (1) Nonreflecting boundaries including the viscous boundary and viscoelastic boundary are considered; (2) A free‐field boundary is incorporated into NMM to accurately simulate external source wave motion; (3) A seismic input boundary is considered, and the force input method is introduced; and (4) A static‐dynamic unified boundary is incorporated for the convenience of transforming displacement boundary into other types of boundaries, such as nonreflecting boundaries and seismic input boundary. Several benchmark problems are solved to validate the improved NMM. Simulation results agree well with analytical ones, indicating that the improved NMM is able to simulate seismic dynamic response of rock masses reliably and correctly.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.2786</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-8108-3009</orcidid><orcidid>https://orcid.org/0000-0002-3400-0549</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2018-06, Vol.42 (9), p.1095-1122 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_2049618318 |
source | Access via Wiley Online Library |
subjects | Boundaries boundary settings Computer simulation Dynamic response Manifolds Methods Nonreflecting boundaries numerical manifold method (NMM) Performance enhancement Response analysis rock masses Rocks Seismic analysis seismic dynamic response seismic input Seismic response Viscoelasticity Wave motion Waves |
title | Boundary settings for the seismic dynamic response analysis of rock masses using the numerical manifold method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20settings%20for%20the%20seismic%20dynamic%20response%20analysis%20of%20rock%20masses%20using%20the%20numerical%20manifold%20method&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Yang,%20Yongtao&rft.date=2018-06-25&rft.volume=42&rft.issue=9&rft.spage=1095&rft.epage=1122&rft.pages=1095-1122&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.2786&rft_dat=%3Cproquest_cross%3E2049618318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049618318&rft_id=info:pmid/&rfr_iscdi=true |