Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information
The purpose of this paper is to advance the similarity coefficient method to solve cell formation (CF) problems in two aspects. Firstly, while numerous similarity coefficients have been proposed to incorporate different production factors in literature, a weighted sum formulation is applied to aggre...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Zhu, Yingyu Li, Simon |
description | The purpose of this paper is to advance the similarity coefficient method to solve cell formation (CF) problems in two aspects. Firstly, while numerous similarity coefficients have been proposed to incorporate different production factors in literature, a weighted sum formulation is applied to aggregate them into a nonbinary matrix to indicate the dependency strength among machines and parts. This practice allows flexible incorporation of multiple production factors in the resolution of CF problems. Secondly, a two-mode similarity coefficient is applied to simultaneously form machine groups and part families based on the classical framework of hierarchical clustering. This practice not only eliminates the sequential process of grouping machines (or parts) first and then assigning parts (or machines), but also improves the quality of solutions. The proposed clustering method has been tested through twelve literature examples. The results demonstrate that the proposed method can at least yield solutions comparable to the solutions obtained by metaheuristics. It can yield better results in some instances, as well. |
doi_str_mv | 10.1155/2018/2841325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2049500415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049500415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-488f2e8d1895ff8c24fececdee50dfef17397964fad43ac8660721ee2c5ea8d3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_Uw2RwnWFgoK9uBBCOtm1m5JsnU3ofjvTUzFo6eZYR5m4EXokuA7QoSYUUzkjEpOGBVHaEJEwmJBeHrc95jymFD2eorOQthiTIkgcoLeXmzdVa1qwHUhWljwyuuN1aqK8qoLLXjbfETG-SiHqormzteqta6Jnr17r6AO0d62m2EqO_2zWDbmF52jE6OqABeHOkXr-cM6X8Srp8dlfr-KNUtwG3MpDQVZEpkJY6Sm3IAGXQIIXBowJGVZmiXcqJIzpWWS4JQSAKoFKFmyKboez-68--wgtMXWdb7pPxYU80xgzIno1e2otHcheDDFztta-a-C4GKIrxjiKw7x9fxm5BvblGpv_9NXo4begFF_muKEZ5h9A2ebewc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049500415</pqid></control><display><type>article</type><title>Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhu, Yingyu ; Li, Simon</creator><contributor>Akram, Muhammad N. ; Muhammad N Akram</contributor><creatorcontrib>Zhu, Yingyu ; Li, Simon ; Akram, Muhammad N. ; Muhammad N Akram</creatorcontrib><description>The purpose of this paper is to advance the similarity coefficient method to solve cell formation (CF) problems in two aspects. Firstly, while numerous similarity coefficients have been proposed to incorporate different production factors in literature, a weighted sum formulation is applied to aggregate them into a nonbinary matrix to indicate the dependency strength among machines and parts. This practice allows flexible incorporation of multiple production factors in the resolution of CF problems. Secondly, a two-mode similarity coefficient is applied to simultaneously form machine groups and part families based on the classical framework of hierarchical clustering. This practice not only eliminates the sequential process of grouping machines (or parts) first and then assigning parts (or machines), but also improves the quality of solutions. The proposed clustering method has been tested through twelve literature examples. The results demonstrate that the proposed method can at least yield solutions comparable to the solutions obtained by metaheuristics. It can yield better results in some instances, as well.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/2841325</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Cluster analysis ; Clustering ; Coefficients ; Computers ; Dependence ; Group technology ; Industrial engineering ; Manufacturing cells ; Mathematical programming ; Neural networks ; Optimization techniques ; Production factors ; Similarity ; Similarity coefficient method ; Similarity measures</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-13</ispartof><rights>Copyright © 2018 Yingyu Zhu and Simon Li.</rights><rights>Copyright © 2018 Yingyu Zhu and Simon Li.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-488f2e8d1895ff8c24fececdee50dfef17397964fad43ac8660721ee2c5ea8d3</citedby><cites>FETCH-LOGICAL-c360t-488f2e8d1895ff8c24fececdee50dfef17397964fad43ac8660721ee2c5ea8d3</cites><orcidid>0000-0002-8819-5222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Akram, Muhammad N.</contributor><contributor>Muhammad N Akram</contributor><creatorcontrib>Zhu, Yingyu</creatorcontrib><creatorcontrib>Li, Simon</creatorcontrib><title>Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information</title><title>Mathematical problems in engineering</title><description>The purpose of this paper is to advance the similarity coefficient method to solve cell formation (CF) problems in two aspects. Firstly, while numerous similarity coefficients have been proposed to incorporate different production factors in literature, a weighted sum formulation is applied to aggregate them into a nonbinary matrix to indicate the dependency strength among machines and parts. This practice allows flexible incorporation of multiple production factors in the resolution of CF problems. Secondly, a two-mode similarity coefficient is applied to simultaneously form machine groups and part families based on the classical framework of hierarchical clustering. This practice not only eliminates the sequential process of grouping machines (or parts) first and then assigning parts (or machines), but also improves the quality of solutions. The proposed clustering method has been tested through twelve literature examples. The results demonstrate that the proposed method can at least yield solutions comparable to the solutions obtained by metaheuristics. It can yield better results in some instances, as well.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Coefficients</subject><subject>Computers</subject><subject>Dependence</subject><subject>Group technology</subject><subject>Industrial engineering</subject><subject>Manufacturing cells</subject><subject>Mathematical programming</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Production factors</subject><subject>Similarity</subject><subject>Similarity coefficient method</subject><subject>Similarity measures</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTY_Uw2RwnWFgoK9uBBCOtm1m5JsnU3ofjvTUzFo6eZYR5m4EXokuA7QoSYUUzkjEpOGBVHaEJEwmJBeHrc95jymFD2eorOQthiTIkgcoLeXmzdVa1qwHUhWljwyuuN1aqK8qoLLXjbfETG-SiHqormzteqta6Jnr17r6AO0d62m2EqO_2zWDbmF52jE6OqABeHOkXr-cM6X8Srp8dlfr-KNUtwG3MpDQVZEpkJY6Sm3IAGXQIIXBowJGVZmiXcqJIzpWWS4JQSAKoFKFmyKboez-68--wgtMXWdb7pPxYU80xgzIno1e2otHcheDDFztta-a-C4GKIrxjiKw7x9fxm5BvblGpv_9NXo4begFF_muKEZ5h9A2ebewc</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhu, Yingyu</creator><creator>Li, Simon</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8819-5222</orcidid></search><sort><creationdate>20180101</creationdate><title>Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information</title><author>Zhu, Yingyu ; Li, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-488f2e8d1895ff8c24fececdee50dfef17397964fad43ac8660721ee2c5ea8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Coefficients</topic><topic>Computers</topic><topic>Dependence</topic><topic>Group technology</topic><topic>Industrial engineering</topic><topic>Manufacturing cells</topic><topic>Mathematical programming</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Production factors</topic><topic>Similarity</topic><topic>Similarity coefficient method</topic><topic>Similarity measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yingyu</creatorcontrib><creatorcontrib>Li, Simon</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yingyu</au><au>Li, Simon</au><au>Akram, Muhammad N.</au><au>Muhammad N Akram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The purpose of this paper is to advance the similarity coefficient method to solve cell formation (CF) problems in two aspects. Firstly, while numerous similarity coefficients have been proposed to incorporate different production factors in literature, a weighted sum formulation is applied to aggregate them into a nonbinary matrix to indicate the dependency strength among machines and parts. This practice allows flexible incorporation of multiple production factors in the resolution of CF problems. Secondly, a two-mode similarity coefficient is applied to simultaneously form machine groups and part families based on the classical framework of hierarchical clustering. This practice not only eliminates the sequential process of grouping machines (or parts) first and then assigning parts (or machines), but also improves the quality of solutions. The proposed clustering method has been tested through twelve literature examples. The results demonstrate that the proposed method can at least yield solutions comparable to the solutions obtained by metaheuristics. It can yield better results in some instances, as well.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/2841325</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8819-5222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-13 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2049500415 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Advanced manufacturing technologies Algorithms Cluster analysis Clustering Coefficients Computers Dependence Group technology Industrial engineering Manufacturing cells Mathematical programming Neural networks Optimization techniques Production factors Similarity Similarity coefficient method Similarity measures |
title | Simultaneous Hierarchical Clustering for Cell Formation Problems with Production Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Hierarchical%20Clustering%20for%20Cell%20Formation%20Problems%20with%20Production%20Information&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhu,%20Yingyu&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/2841325&rft_dat=%3Cproquest_cross%3E2049500415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049500415&rft_id=info:pmid/&rfr_iscdi=true |