Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence
Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H 2 O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF...
Gespeichert in:
Veröffentlicht in: | Geochemistry international 2018-06, Vol.56 (6), p.521-534 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 6 |
container_start_page | 521 |
container_title | Geochemistry international |
container_volume | 56 |
creator | Gramenitskii, E. N. Kotel’nikov, A. R. Shchekina, T. I. Yakubovich, O. V. Devyatova, V. N. Zubkov, E. S. Suk, N. I. Vigasina, M. F. Kotel’nikova, Z. A. |
description | Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H
2
O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF
6
]
3–
, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na
7
(H
2
O)
8
[Si
5
Al
7
O
24
] and Na
8
(AlF
6
)(H
2
O)
4
[Si
7
Al
5
O
24
]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl
–
and SO
4
2-
, because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al. |
doi_str_mv | 10.1134/S0016702918060058 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2049467187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724280918</galeid><sourcerecordid>A724280918</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-554f132d4872de85296af5ceb55afdb6f12d6a6481c05ec8236a34fe0ce4006b3</originalsourceid><addsrcrecordid>eNp1kU1PxCAQhonRxPXjB3hr4tUqUKDUm2521cTEw-q5YWHYYLpQoTX676WuiQdjOEyGd54ZeAehM4IvCanY1QpjImpMGyKxwJjLPTQjnIuSNELuo9kkl5N-iI5SesWYsaqpZ2gzD9s-JDe44C-K1RBHPYwRLgrlTTEP3nwrqQi2WIa4VVP2nXRjiM5DeQsqx02xCkZ1boDrYvHRQ3Rb8IPqisW7M-A1nKADq7oEpz_xGL0sF8_z-_Lx6e5hfvNYqqqWQ8k5s6SihsmaGpCcNkJZrmHNubJmLSyhRijBJNGYg5a0EqpiFrAGhrFYV8fofNe3j-FthDS0r2GMPo9sKWYNEzWRda663FVtVAet8zYMUel8DGydDh6sy_c3NWVU4mxpBsgO0DGkFMG2ff6iip8twe20gPbPAjJDd0zqJ4cg_j7lf-gLV5KHeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049467187</pqid></control><display><type>article</type><title>Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gramenitskii, E. N. ; Kotel’nikov, A. R. ; Shchekina, T. I. ; Yakubovich, O. V. ; Devyatova, V. N. ; Zubkov, E. S. ; Suk, N. I. ; Vigasina, M. F. ; Kotel’nikova, Z. A.</creator><creatorcontrib>Gramenitskii, E. N. ; Kotel’nikov, A. R. ; Shchekina, T. I. ; Yakubovich, O. V. ; Devyatova, V. N. ; Zubkov, E. S. ; Suk, N. I. ; Vigasina, M. F. ; Kotel’nikova, Z. A.</creatorcontrib><description>Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H
2
O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF
6
]
3–
, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na
7
(H
2
O)
8
[Si
5
Al
7
O
24
] and Na
8
(AlF
6
)(H
2
O)
4
[Si
7
Al
5
O
24
]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl
–
and SO
4
2-
, because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.</description><identifier>ISSN: 0016-7029</identifier><identifier>EISSN: 1556-1968</identifier><identifier>DOI: 10.1134/S0016702918060058</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminosilicates ; Aluminum ; Aluminum compounds ; Aluminum silicates ; Analcime ; Anions ; Chlorine ; Composition ; Cryolite ; Diffraction ; Earth and Environmental Science ; Earth Sciences ; Fluorine ; Fluorine compounds ; Geochemistry ; Infrared spectroscopy ; Nepheline ; Pegmatite ; Silicon ; Sodalite ; Sulfates ; Surface active agents ; X-ray diffraction ; X-rays</subject><ispartof>Geochemistry international, 2018-06, Vol.56 (6), p.521-534</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Geochemistry International is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-554f132d4872de85296af5ceb55afdb6f12d6a6481c05ec8236a34fe0ce4006b3</citedby><cites>FETCH-LOGICAL-a378t-554f132d4872de85296af5ceb55afdb6f12d6a6481c05ec8236a34fe0ce4006b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016702918060058$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016702918060058$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gramenitskii, E. N.</creatorcontrib><creatorcontrib>Kotel’nikov, A. R.</creatorcontrib><creatorcontrib>Shchekina, T. I.</creatorcontrib><creatorcontrib>Yakubovich, O. V.</creatorcontrib><creatorcontrib>Devyatova, V. N.</creatorcontrib><creatorcontrib>Zubkov, E. S.</creatorcontrib><creatorcontrib>Suk, N. I.</creatorcontrib><creatorcontrib>Vigasina, M. F.</creatorcontrib><creatorcontrib>Kotel’nikova, Z. A.</creatorcontrib><title>Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence</title><title>Geochemistry international</title><addtitle>Geochem. Int</addtitle><description>Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H
2
O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF
6
]
3–
, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na
7
(H
2
O)
8
[Si
5
Al
7
O
24
] and Na
8
(AlF
6
)(H
2
O)
4
[Si
7
Al
5
O
24
]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl
–
and SO
4
2-
, because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.</description><subject>Aluminosilicates</subject><subject>Aluminum</subject><subject>Aluminum compounds</subject><subject>Aluminum silicates</subject><subject>Analcime</subject><subject>Anions</subject><subject>Chlorine</subject><subject>Composition</subject><subject>Cryolite</subject><subject>Diffraction</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluorine</subject><subject>Fluorine compounds</subject><subject>Geochemistry</subject><subject>Infrared spectroscopy</subject><subject>Nepheline</subject><subject>Pegmatite</subject><subject>Silicon</subject><subject>Sodalite</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>0016-7029</issn><issn>1556-1968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1PxCAQhonRxPXjB3hr4tUqUKDUm2521cTEw-q5YWHYYLpQoTX676WuiQdjOEyGd54ZeAehM4IvCanY1QpjImpMGyKxwJjLPTQjnIuSNELuo9kkl5N-iI5SesWYsaqpZ2gzD9s-JDe44C-K1RBHPYwRLgrlTTEP3nwrqQi2WIa4VVP2nXRjiM5DeQsqx02xCkZ1boDrYvHRQ3Rb8IPqisW7M-A1nKADq7oEpz_xGL0sF8_z-_Lx6e5hfvNYqqqWQ8k5s6SihsmaGpCcNkJZrmHNubJmLSyhRijBJNGYg5a0EqpiFrAGhrFYV8fofNe3j-FthDS0r2GMPo9sKWYNEzWRda663FVtVAet8zYMUel8DGydDh6sy_c3NWVU4mxpBsgO0DGkFMG2ff6iip8twe20gPbPAjJDd0zqJ4cg_j7lf-gLV5KHeQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gramenitskii, E. N.</creator><creator>Kotel’nikov, A. R.</creator><creator>Shchekina, T. I.</creator><creator>Yakubovich, O. V.</creator><creator>Devyatova, V. N.</creator><creator>Zubkov, E. S.</creator><creator>Suk, N. I.</creator><creator>Vigasina, M. F.</creator><creator>Kotel’nikova, Z. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence</title><author>Gramenitskii, E. N. ; Kotel’nikov, A. R. ; Shchekina, T. I. ; Yakubovich, O. V. ; Devyatova, V. N. ; Zubkov, E. S. ; Suk, N. I. ; Vigasina, M. F. ; Kotel’nikova, Z. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-554f132d4872de85296af5ceb55afdb6f12d6a6481c05ec8236a34fe0ce4006b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminosilicates</topic><topic>Aluminum</topic><topic>Aluminum compounds</topic><topic>Aluminum silicates</topic><topic>Analcime</topic><topic>Anions</topic><topic>Chlorine</topic><topic>Composition</topic><topic>Cryolite</topic><topic>Diffraction</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluorine</topic><topic>Fluorine compounds</topic><topic>Geochemistry</topic><topic>Infrared spectroscopy</topic><topic>Nepheline</topic><topic>Pegmatite</topic><topic>Silicon</topic><topic>Sodalite</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramenitskii, E. N.</creatorcontrib><creatorcontrib>Kotel’nikov, A. R.</creatorcontrib><creatorcontrib>Shchekina, T. I.</creatorcontrib><creatorcontrib>Yakubovich, O. V.</creatorcontrib><creatorcontrib>Devyatova, V. N.</creatorcontrib><creatorcontrib>Zubkov, E. S.</creatorcontrib><creatorcontrib>Suk, N. I.</creatorcontrib><creatorcontrib>Vigasina, M. F.</creatorcontrib><creatorcontrib>Kotel’nikova, Z. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geochemistry international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramenitskii, E. N.</au><au>Kotel’nikov, A. R.</au><au>Shchekina, T. I.</au><au>Yakubovich, O. V.</au><au>Devyatova, V. N.</au><au>Zubkov, E. S.</au><au>Suk, N. I.</au><au>Vigasina, M. F.</au><au>Kotel’nikova, Z. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence</atitle><jtitle>Geochemistry international</jtitle><stitle>Geochem. Int</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>56</volume><issue>6</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>0016-7029</issn><eissn>1556-1968</eissn><abstract>Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H
2
O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF
6
]
3–
, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na
7
(H
2
O)
8
[Si
5
Al
7
O
24
] and Na
8
(AlF
6
)(H
2
O)
4
[Si
7
Al
5
O
24
]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl
–
and SO
4
2-
, because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016702918060058</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7029 |
ispartof | Geochemistry international, 2018-06, Vol.56 (6), p.521-534 |
issn | 0016-7029 1556-1968 |
language | eng |
recordid | cdi_proquest_journals_2049467187 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminosilicates Aluminum Aluminum compounds Aluminum silicates Analcime Anions Chlorine Composition Cryolite Diffraction Earth and Environmental Science Earth Sciences Fluorine Fluorine compounds Geochemistry Infrared spectroscopy Nepheline Pegmatite Silicon Sodalite Sulfates Surface active agents X-ray diffraction X-rays |
title | Composition, Structure, and Conditions of Formation of Fluorine-Bearing Sodalite: Experimental Evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A18%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition,%20Structure,%20and%20Conditions%20of%20Formation%20of%20Fluorine-Bearing%20Sodalite:%20Experimental%20Evidence&rft.jtitle=Geochemistry%20international&rft.au=Gramenitskii,%20E.%20N.&rft.date=2018-06-01&rft.volume=56&rft.issue=6&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=0016-7029&rft.eissn=1556-1968&rft_id=info:doi/10.1134/S0016702918060058&rft_dat=%3Cgale_proqu%3EA724280918%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049467187&rft_id=info:pmid/&rft_galeid=A724280918&rfr_iscdi=true |