Continuity Properties of the Solution Map for the Euler–Poisson Equation

We study the continuity properties of the data-to-solution map for the modified Euler–Poisson equation. We show that for initial data in the Sobolev space H s , s > 3 / 2 , the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H γ topology for s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2018-06, Vol.20 (2), p.757-769
Hauptverfasser: Holmes, J., Tığlay, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 769
container_issue 2
container_start_page 757
container_title Journal of mathematical fluid mechanics
container_volume 20
creator Holmes, J.
Tığlay, F.
description We study the continuity properties of the data-to-solution map for the modified Euler–Poisson equation. We show that for initial data in the Sobolev space H s , s > 3 / 2 , the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H γ topology for s > γ and find that the data-to-solution map is Hölder continuous.
doi_str_mv 10.1007/s00021-017-0343-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048690075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2048690075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-365cb47950c22bf7be95c8f156d26b6c10180557687de7e28556cab120b939b23</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqVwAHaRWBvGTmzHS1SVPxVRCVhbsetAqhKntrPojjtwQ06CQxCsWM1o5n0z0kPolMA5ARAXAQAowUAEhrzIcbGHJqSgFHPJ6P5vT8tDdBTCGhLIJJ2gu5lrY9P2TdxlS-8662NjQ-bqLL7a7NFt-ti4Nruvuqx2_ns47zfWf75_LF0TQtrNt301QMfooK42wZ781Cl6vpo_zW7w4uH6dna5wCYnPOKcM6MLIRkYSnUttJXMlDVhfEW55oYAKYExwUuxssLSkjFuKk0oaJlLTfMpOhvvdt5texuiWrvet-mlolCUXCYfLFFkpIx3IXhbq843b5XfKQJqUKZGZSqZUIMyVaQMHTMhse2L9X-X_w99ATkfbiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048690075</pqid></control><display><type>article</type><title>Continuity Properties of the Solution Map for the Euler–Poisson Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Holmes, J. ; Tığlay, F.</creator><creatorcontrib>Holmes, J. ; Tığlay, F.</creatorcontrib><description>We study the continuity properties of the data-to-solution map for the modified Euler–Poisson equation. We show that for initial data in the Sobolev space H s , s &gt; 3 / 2 , the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H γ topology for s &gt; γ and find that the data-to-solution map is Hölder continuous.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-017-0343-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Continuum Physics ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Poisson equation ; Sobolev space ; Theoretical mathematics</subject><ispartof>Journal of mathematical fluid mechanics, 2018-06, Vol.20 (2), p.757-769</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-365cb47950c22bf7be95c8f156d26b6c10180557687de7e28556cab120b939b23</citedby><cites>FETCH-LOGICAL-c316t-365cb47950c22bf7be95c8f156d26b6c10180557687de7e28556cab120b939b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-017-0343-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-017-0343-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Holmes, J.</creatorcontrib><creatorcontrib>Tığlay, F.</creatorcontrib><title>Continuity Properties of the Solution Map for the Euler–Poisson Equation</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We study the continuity properties of the data-to-solution map for the modified Euler–Poisson equation. We show that for initial data in the Sobolev space H s , s &gt; 3 / 2 , the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H γ topology for s &gt; γ and find that the data-to-solution map is Hölder continuous.</description><subject>Classical and Continuum Physics</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Sobolev space</subject><subject>Theoretical mathematics</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqVwAHaRWBvGTmzHS1SVPxVRCVhbsetAqhKntrPojjtwQ06CQxCsWM1o5n0z0kPolMA5ARAXAQAowUAEhrzIcbGHJqSgFHPJ6P5vT8tDdBTCGhLIJJ2gu5lrY9P2TdxlS-8662NjQ-bqLL7a7NFt-ti4Nruvuqx2_ns47zfWf75_LF0TQtrNt301QMfooK42wZ781Cl6vpo_zW7w4uH6dna5wCYnPOKcM6MLIRkYSnUttJXMlDVhfEW55oYAKYExwUuxssLSkjFuKk0oaJlLTfMpOhvvdt5texuiWrvet-mlolCUXCYfLFFkpIx3IXhbq843b5XfKQJqUKZGZSqZUIMyVaQMHTMhse2L9X-X_w99ATkfbiU</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Holmes, J.</creator><creator>Tığlay, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Continuity Properties of the Solution Map for the Euler–Poisson Equation</title><author>Holmes, J. ; Tığlay, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-365cb47950c22bf7be95c8f156d26b6c10180557687de7e28556cab120b939b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Continuum Physics</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Sobolev space</topic><topic>Theoretical mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holmes, J.</creatorcontrib><creatorcontrib>Tığlay, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holmes, J.</au><au>Tığlay, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuity Properties of the Solution Map for the Euler–Poisson Equation</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>20</volume><issue>2</issue><spage>757</spage><epage>769</epage><pages>757-769</pages><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We study the continuity properties of the data-to-solution map for the modified Euler–Poisson equation. We show that for initial data in the Sobolev space H s , s &gt; 3 / 2 , the data-to-solution map is not better than continuous. Furthermore, we consider the solution map in the H γ topology for s &gt; γ and find that the data-to-solution map is Hölder continuous.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-017-0343-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2018-06, Vol.20 (2), p.757-769
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2048690075
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Fluid mechanics
Fluid- and Aerodynamics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Poisson equation
Sobolev space
Theoretical mathematics
title Continuity Properties of the Solution Map for the Euler–Poisson Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuity%20Properties%20of%20the%20Solution%20Map%20for%20the%20Euler%E2%80%93Poisson%20Equation&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Holmes,%20J.&rft.date=2018-06-01&rft.volume=20&rft.issue=2&rft.spage=757&rft.epage=769&rft.pages=757-769&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-017-0343-4&rft_dat=%3Cproquest_cross%3E2048690075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048690075&rft_id=info:pmid/&rfr_iscdi=true