Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys
In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed nea...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-09, Vol.49 (9), p.4186-4198 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4198 |
---|---|
container_issue | 9 |
container_start_page | 4186 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 49 |
creator | Smith, T. M. Esser, B. D. Good, B. Hooshmand, M. S. Viswanathan, G. B. Rae, C. M. F. Ghazisaeidi, M. McComb, D. W. Mills, M. J. |
description | In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale
γ
′ to D0
19
phase transformation. Other notable observations are prominent
γ
-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations. |
doi_str_mv | 10.1007/s11661-018-4701-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048628756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2048628756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ebc8db32380fa384ff8b073a2e497a8fdd6446f01080e79b4215516e888c80ac3</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwAdwscTasY8dxjqWigFQBUsvZchInuKROsd1D_x6XIHHitCvNvNnVIHRN4ZYCFHeBUiEoASoJL4CS_ARNaM4ZoSWH07RDwUguMnaOLkLYAAAtmZigzcp03nQ62sFh7Rr89qGDwWuvXWgHv_0RAp71g-vwar8zvtcx2trgZxe9dcHWeBV1_WmTvtD7PgZsHX6x5D7lNCOi-344hEt01uo-mKvfOUXvi4f1_IksXx-f57MlqRkVkZiqlk3FMiah1UzytpVVel5nhpeFlm3TCM5FCxQkmKKseEbznAojpawl6JpN0c2Yu_PD196EqDbD3rt0UmXApchkkYvkoqOr9kMI3rRq5-1W-4OioI6VqrFSlSpVx0pVnphsZELyus74v-T_oW8rgHn9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048628756</pqid></control><display><type>article</type><title>Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Smith, T. M. ; Esser, B. D. ; Good, B. ; Hooshmand, M. S. ; Viswanathan, G. B. ; Rae, C. M. F. ; Ghazisaeidi, M. ; McComb, D. W. ; Mills, M. J.</creator><creatorcontrib>Smith, T. M. ; Esser, B. D. ; Good, B. ; Hooshmand, M. S. ; Viswanathan, G. B. ; Rae, C. M. F. ; Ghazisaeidi, M. ; McComb, D. W. ; Mills, M. J.</creatorcontrib><description>In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale
γ
′ to D0
19
phase transformation. Other notable observations are prominent
γ
-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4701-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atomic structure ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Creep tests ; Crystal structure ; Density functional theory ; Electrostatic precipitation ; Energy dispersive X ray spectroscopy ; Energy transmission ; Materials Science ; Metallic Materials ; Microstructure ; Nanotechnology ; Nickel base alloys ; Organic chemistry ; Phase transitions ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Single crystals ; Stacking faults ; Structural Materials ; Superalloys ; Superlattices ; Surfaces and Interfaces ; Thin Films ; Third European Symposium on Superalloys and their Applications ; Topical Collection: Superalloys and Their Applications ; Transmission electron microscopy</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-09, Vol.49 (9), p.4186-4198</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ebc8db32380fa384ff8b073a2e497a8fdd6446f01080e79b4215516e888c80ac3</citedby><cites>FETCH-LOGICAL-c316t-ebc8db32380fa384ff8b073a2e497a8fdd6446f01080e79b4215516e888c80ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-018-4701-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-018-4701-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Smith, T. M.</creatorcontrib><creatorcontrib>Esser, B. D.</creatorcontrib><creatorcontrib>Good, B.</creatorcontrib><creatorcontrib>Hooshmand, M. S.</creatorcontrib><creatorcontrib>Viswanathan, G. B.</creatorcontrib><creatorcontrib>Rae, C. M. F.</creatorcontrib><creatorcontrib>Ghazisaeidi, M.</creatorcontrib><creatorcontrib>McComb, D. W.</creatorcontrib><creatorcontrib>Mills, M. J.</creatorcontrib><title>Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale
γ
′ to D0
19
phase transformation. Other notable observations are prominent
γ
-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.</description><subject>Atomic structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Creep tests</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Electrostatic precipitation</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Energy transmission</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Single crystals</subject><subject>Stacking faults</subject><subject>Structural Materials</subject><subject>Superalloys</subject><subject>Superlattices</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Third European Symposium on Superalloys and their Applications</subject><subject>Topical Collection: Superalloys and Their Applications</subject><subject>Transmission electron microscopy</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFOwzAQRC0EEqXwAdwscTasY8dxjqWigFQBUsvZchInuKROsd1D_x6XIHHitCvNvNnVIHRN4ZYCFHeBUiEoASoJL4CS_ARNaM4ZoSWH07RDwUguMnaOLkLYAAAtmZigzcp03nQ62sFh7Rr89qGDwWuvXWgHv_0RAp71g-vwar8zvtcx2trgZxe9dcHWeBV1_WmTvtD7PgZsHX6x5D7lNCOi-344hEt01uo-mKvfOUXvi4f1_IksXx-f57MlqRkVkZiqlk3FMiah1UzytpVVel5nhpeFlm3TCM5FCxQkmKKseEbznAojpawl6JpN0c2Yu_PD196EqDbD3rt0UmXApchkkYvkoqOr9kMI3rRq5-1W-4OioI6VqrFSlSpVx0pVnphsZELyus74v-T_oW8rgHn9</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Smith, T. M.</creator><creator>Esser, B. D.</creator><creator>Good, B.</creator><creator>Hooshmand, M. S.</creator><creator>Viswanathan, G. B.</creator><creator>Rae, C. M. F.</creator><creator>Ghazisaeidi, M.</creator><creator>McComb, D. W.</creator><creator>Mills, M. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20180901</creationdate><title>Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys</title><author>Smith, T. M. ; Esser, B. D. ; Good, B. ; Hooshmand, M. S. ; Viswanathan, G. B. ; Rae, C. M. F. ; Ghazisaeidi, M. ; McComb, D. W. ; Mills, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ebc8db32380fa384ff8b073a2e497a8fdd6446f01080e79b4215516e888c80ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Creep tests</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Electrostatic precipitation</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Energy transmission</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Single crystals</topic><topic>Stacking faults</topic><topic>Structural Materials</topic><topic>Superalloys</topic><topic>Superlattices</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Third European Symposium on Superalloys and their Applications</topic><topic>Topical Collection: Superalloys and Their Applications</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, T. M.</creatorcontrib><creatorcontrib>Esser, B. D.</creatorcontrib><creatorcontrib>Good, B.</creatorcontrib><creatorcontrib>Hooshmand, M. S.</creatorcontrib><creatorcontrib>Viswanathan, G. B.</creatorcontrib><creatorcontrib>Rae, C. M. F.</creatorcontrib><creatorcontrib>Ghazisaeidi, M.</creatorcontrib><creatorcontrib>McComb, D. W.</creatorcontrib><creatorcontrib>Mills, M. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, T. M.</au><au>Esser, B. D.</au><au>Good, B.</au><au>Hooshmand, M. S.</au><au>Viswanathan, G. B.</au><au>Rae, C. M. F.</au><au>Ghazisaeidi, M.</au><au>McComb, D. W.</au><au>Mills, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>49</volume><issue>9</issue><spage>4186</spage><epage>4198</epage><pages>4186-4198</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale
γ
′ to D0
19
phase transformation. Other notable observations are prominent
γ
-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4701-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-09, Vol.49 (9), p.4186-4198 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2048628756 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic structure Characterization and Evaluation of Materials Chemistry and Materials Science Creep tests Crystal structure Density functional theory Electrostatic precipitation Energy dispersive X ray spectroscopy Energy transmission Materials Science Metallic Materials Microstructure Nanotechnology Nickel base alloys Organic chemistry Phase transitions Scanning electron microscopy Scanning transmission electron microscopy Single crystals Stacking faults Structural Materials Superalloys Superlattices Surfaces and Interfaces Thin Films Third European Symposium on Superalloys and their Applications Topical Collection: Superalloys and Their Applications Transmission electron microscopy |
title | Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segregation%20and%20Phase%20Transformations%20Along%20Superlattice%20Intrinsic%20Stacking%20Faults%20in%20Ni-Based%20Superalloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Smith,%20T.%20M.&rft.date=2018-09-01&rft.volume=49&rft.issue=9&rft.spage=4186&rft.epage=4198&rft.pages=4186-4198&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4701-5&rft_dat=%3Cproquest_cross%3E2048628756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048628756&rft_id=info:pmid/&rfr_iscdi=true |