An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation

Aims We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). Methods We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2018-06, Vol.427 (1/2), p.139-148
Hauptverfasser: Adams, Jessica L., Tipping, Edward, Thacker, Sarah A., Quinton, John N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1/2
container_start_page 139
container_title Plant and soil
container_volume 427
creator Adams, Jessica L.
Tipping, Edward
Thacker, Sarah A.
Quinton, John N.
description Aims We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). Methods We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference). Results Good recoveries of soil mass (96%), OC and TN (both ∼ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P. Conclusions The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.
doi_str_mv 10.1007/s11104-017-3478-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2048610633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541225554</galeid><jstor_id>26652893</jstor_id><sourcerecordid>A541225554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-31bf074a182491ec1f0a3a6dae6cfc2cbb89feaa5cf345b4a5d0e5afce0c6933</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMo2I4-gLuAuLPG_Ff1shn8gwE3s3AXbqVuatJ0J22SUuYJfG1TlqIrCSHkcr577uUQ8pKza85Y_7ZwzpnqGO87qfqhU4_IjutedppJ85jsGJOiY_3-y1PyrJQjW__c7MiPQ6QhfsNSwww1pEiTp_Ue6RRKzWFc_tQu96m0m5dCR6zfESP1GZFCnOg5RMxwolBKcgEqTrSkcKIpzxCDo2eoFfMbupQQZzphLKE-NBzc2v2X7XPyxMOp4Ivf7xW5e__u7uZjd_v5w6ebw23nlOa1k3z0rFfAB6H2HB33DCSYCdA474Qbx2HvEUA7L5UeFeiJoQbvkDmzl_KKvNraXnL6urSt7TEtOTZHK5gaDGdGrqrrTTXDCW2IPtU2azsTnoNLEX1o9YNWXAittWoA3wCXUykZvb3kcIb8YDmzaz52y8e2fOyaj10ZsTGlaeOM-e8o_4Neb9Cx1JT_dRGyAcIYLYa2509i9qJ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048610633</pqid></control><display><type>article</type><title>An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Adams, Jessica L. ; Tipping, Edward ; Thacker, Sarah A. ; Quinton, John N.</creator><creatorcontrib>Adams, Jessica L. ; Tipping, Edward ; Thacker, Sarah A. ; Quinton, John N.</creatorcontrib><description>Aims We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). Methods We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference). Results Good recoveries of soil mass (96%), OC and TN (both ∼ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P. Conclusions The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-017-3478-4</identifier><language>eng</language><publisher>Cham: Springer</publisher><subject>Biomedical and Life Sciences ; Composition ; Distribution ; Ecology ; Fractionation ; Fractions ; Gravity ; Humus ; Life Sciences ; Organic carbon ; Organic matter ; Organic phosphorus ; Organic soils ; Pasture ; Phosphorus ; Plant Physiology ; Plant Sciences ; Recovery ; Regular Article ; Sodium ; Soil investigations ; Soil organic matter ; Soil phosphorus ; Soil Science &amp; Conservation ; Soils ; Specific gravity</subject><ispartof>Plant and soil, 2018-06, Vol.427 (1/2), p.139-148</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Springer International Publishing AG 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-31bf074a182491ec1f0a3a6dae6cfc2cbb89feaa5cf345b4a5d0e5afce0c6933</citedby><cites>FETCH-LOGICAL-c451t-31bf074a182491ec1f0a3a6dae6cfc2cbb89feaa5cf345b4a5d0e5afce0c6933</cites><orcidid>0000-0003-1825-0537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26652893$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26652893$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,27905,27906,41469,42538,51300,57998,58231</link.rule.ids></links><search><creatorcontrib>Adams, Jessica L.</creatorcontrib><creatorcontrib>Tipping, Edward</creatorcontrib><creatorcontrib>Thacker, Sarah A.</creatorcontrib><creatorcontrib>Quinton, John N.</creatorcontrib><title>An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Aims We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). Methods We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference). Results Good recoveries of soil mass (96%), OC and TN (both ∼ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P. Conclusions The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.</description><subject>Biomedical and Life Sciences</subject><subject>Composition</subject><subject>Distribution</subject><subject>Ecology</subject><subject>Fractionation</subject><subject>Fractions</subject><subject>Gravity</subject><subject>Humus</subject><subject>Life Sciences</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Organic phosphorus</subject><subject>Organic soils</subject><subject>Pasture</subject><subject>Phosphorus</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Recovery</subject><subject>Regular Article</subject><subject>Sodium</subject><subject>Soil investigations</subject><subject>Soil organic matter</subject><subject>Soil phosphorus</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>Specific gravity</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc2KFDEUhYMo2I4-gLuAuLPG_Ff1shn8gwE3s3AXbqVuatJ0J22SUuYJfG1TlqIrCSHkcr577uUQ8pKza85Y_7ZwzpnqGO87qfqhU4_IjutedppJ85jsGJOiY_3-y1PyrJQjW__c7MiPQ6QhfsNSwww1pEiTp_Ue6RRKzWFc_tQu96m0m5dCR6zfESP1GZFCnOg5RMxwolBKcgEqTrSkcKIpzxCDo2eoFfMbupQQZzphLKE-NBzc2v2X7XPyxMOp4Ivf7xW5e__u7uZjd_v5w6ebw23nlOa1k3z0rFfAB6H2HB33DCSYCdA474Qbx2HvEUA7L5UeFeiJoQbvkDmzl_KKvNraXnL6urSt7TEtOTZHK5gaDGdGrqrrTTXDCW2IPtU2azsTnoNLEX1o9YNWXAittWoA3wCXUykZvb3kcIb8YDmzaz52y8e2fOyaj10ZsTGlaeOM-e8o_4Neb9Cx1JT_dRGyAcIYLYa2509i9qJ3</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Adams, Jessica L.</creator><creator>Tipping, Edward</creator><creator>Thacker, Sarah A.</creator><creator>Quinton, John N.</creator><general>Springer</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1825-0537</orcidid></search><sort><creationdate>20180601</creationdate><title>An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation</title><author>Adams, Jessica L. ; Tipping, Edward ; Thacker, Sarah A. ; Quinton, John N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-31bf074a182491ec1f0a3a6dae6cfc2cbb89feaa5cf345b4a5d0e5afce0c6933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical and Life Sciences</topic><topic>Composition</topic><topic>Distribution</topic><topic>Ecology</topic><topic>Fractionation</topic><topic>Fractions</topic><topic>Gravity</topic><topic>Humus</topic><topic>Life Sciences</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Organic phosphorus</topic><topic>Organic soils</topic><topic>Pasture</topic><topic>Phosphorus</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Recovery</topic><topic>Regular Article</topic><topic>Sodium</topic><topic>Soil investigations</topic><topic>Soil organic matter</topic><topic>Soil phosphorus</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>Specific gravity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, Jessica L.</creatorcontrib><creatorcontrib>Tipping, Edward</creatorcontrib><creatorcontrib>Thacker, Sarah A.</creatorcontrib><creatorcontrib>Quinton, John N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, Jessica L.</au><au>Tipping, Edward</au><au>Thacker, Sarah A.</au><au>Quinton, John N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>427</volume><issue>1/2</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>Aims We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM). Methods We performed density fractionations using sodium polytungstate solution (specific gravity 1.6 g cm−3) on 20 soils from UK semi-natural and pasture ecosystems, to obtain a light fraction (LF) and a heavy fraction (HF) for each soil. The fractions were quantified by weight, and analysed for organic carbon (OC), total N (TN), total P (TP), inorganic P (IP), and OP (by difference). Results Good recoveries of soil mass (96%), OC and TN (both ∼ 90%) were obtained, but recovery of OP only averaged 56%. The average P:C ratio of HF SOM exceeded that of LF SOM by a factor of six, greater than the factor of two obtained for TN:OC. For the soils studied, the elements of SOM were predominantly in the HF, with averages of 75% for C, 82% for N, and 90% for P. Conclusions The incomplete recovery of OP demands further work. Nonetheless, the results show that HF SOM is much richer in P than LF SOM.</abstract><cop>Cham</cop><pub>Springer</pub><doi>10.1007/s11104-017-3478-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1825-0537</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2018-06, Vol.427 (1/2), p.139-148
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_journals_2048610633
source Jstor Complete Legacy; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Composition
Distribution
Ecology
Fractionation
Fractions
Gravity
Humus
Life Sciences
Organic carbon
Organic matter
Organic phosphorus
Organic soils
Pasture
Phosphorus
Plant Physiology
Plant Sciences
Recovery
Regular Article
Sodium
Soil investigations
Soil organic matter
Soil phosphorus
Soil Science & Conservation
Soils
Specific gravity
title An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20investigation%20of%20the%20distribution%20of%20phosphorus%20between%20free%20and%20mineral%20associated%20soil%20organic%20matter,%20using%20density%20fractionation&rft.jtitle=Plant%20and%20soil&rft.au=Adams,%20Jessica%20L.&rft.date=2018-06-01&rft.volume=427&rft.issue=1/2&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-017-3478-4&rft_dat=%3Cgale_proqu%3EA541225554%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048610633&rft_id=info:pmid/&rft_galeid=A541225554&rft_jstor_id=26652893&rfr_iscdi=true