Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions

Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-04, Vol.130, p.127-136
Hauptverfasser: Mangolini, Filippo, Krick, Brandon A., Jacobs, Tevis D.B., Khanal, Subarna R., Streller, Frank, McClimon, J. Brandon, Hilbert, James, Prasad, Somuri V., Scharf, Thomas W., Ohlhausen, James A., Lukes, Jennifer R., Sawyer, W. Gregory, Carpick, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 127
container_title Carbon (New York)
container_volume 130
creator Mangolini, Filippo
Krick, Brandon A.
Jacobs, Tevis D.B.
Khanal, Subarna R.
Streller, Frank
McClimon, J. Brandon
Hilbert, James
Prasad, Somuri V.
Scharf, Thomas W.
Ohlhausen, James A.
Lukes, Jennifer R.
Sawyer, W. Gregory
Carpick, Robert W.
description Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H. A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.12.096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048536864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317313295</els_id><sourcerecordid>2048536864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKv_wEPA865JdjfdvQhS6gMKXvQcZvNwU9qkJtli8c-bsp49DTN88_oQuqWkpITy-00pIfTelYzQRUlZSTp-hma0XVRF1Xb0HM0IIW3BGasu0VWMm5zWLa1n6GdljJYJe4Oj3VrpHQansP8-fmqHld-DSxHnaho0jgn6DKXjCR-OKvgMQdIKw86H_eDHiKdL8OiUDniAEAes3cEG73baJdjivELZZL2L1-jCwDbqm784Rx9Pq_flS7F-e35dPq4LWbUkFb3qGAAD2TQGqCEVkaQnZEGgb7sOqGIN603DeWNMV9WULbqatjU3fadAc6jm6G6auw_-a9QxiY0fg8srBcsamoq3vM5UPVEy-BiDNmIf7A7CUVAiTprFRkzPiZNmQZnImnPbw9Sm8wcHq4OI0montbIhixXK2_8H_AJzaIrN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048536864</pqid></control><display><type>article</type><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</creator><creatorcontrib>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</creatorcontrib><description>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H. A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.12.096</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aerospace industry ; Amorphous carbon-based materials ; Amorphous materials ; Carbon ; Heat conductivity ; High temperature ; Hydrogenation ; International Space Station ; Low earth orbit ; Low earth orbits ; Materials durability ; Near edge X-ray absorption fine structure spectroscopy ; Optical properties ; Oxidation resistance ; Oxygen ; Protective coatings ; Residual stress ; Silicon ; Silicon dioxide ; Silicon- and oxygen-containing hydrogenated amorphous carbon ; Studies ; Thermal stability ; X-ray photoelectron spectroscopy</subject><ispartof>Carbon (New York), 2018-04, Vol.130, p.127-136</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</citedby><cites>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</cites><orcidid>0000-0003-3360-9122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317313295$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Krick, Brandon A.</creatorcontrib><creatorcontrib>Jacobs, Tevis D.B.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Streller, Frank</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Prasad, Somuri V.</creatorcontrib><creatorcontrib>Scharf, Thomas W.</creatorcontrib><creatorcontrib>Ohlhausen, James A.</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><title>Carbon (New York)</title><description>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H. A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</description><subject>Aerospace industry</subject><subject>Amorphous carbon-based materials</subject><subject>Amorphous materials</subject><subject>Carbon</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Hydrogenation</subject><subject>International Space Station</subject><subject>Low earth orbit</subject><subject>Low earth orbits</subject><subject>Materials durability</subject><subject>Near edge X-ray absorption fine structure spectroscopy</subject><subject>Optical properties</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Silicon- and oxygen-containing hydrogenated amorphous carbon</subject><subject>Studies</subject><subject>Thermal stability</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKv_wEPA865JdjfdvQhS6gMKXvQcZvNwU9qkJtli8c-bsp49DTN88_oQuqWkpITy-00pIfTelYzQRUlZSTp-hma0XVRF1Xb0HM0IIW3BGasu0VWMm5zWLa1n6GdljJYJe4Oj3VrpHQansP8-fmqHld-DSxHnaho0jgn6DKXjCR-OKvgMQdIKw86H_eDHiKdL8OiUDniAEAes3cEG73baJdjivELZZL2L1-jCwDbqm784Rx9Pq_flS7F-e35dPq4LWbUkFb3qGAAD2TQGqCEVkaQnZEGgb7sOqGIN603DeWNMV9WULbqatjU3fadAc6jm6G6auw_-a9QxiY0fg8srBcsamoq3vM5UPVEy-BiDNmIf7A7CUVAiTprFRkzPiZNmQZnImnPbw9Sm8wcHq4OI0montbIhixXK2_8H_AJzaIrN</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Mangolini, Filippo</creator><creator>Krick, Brandon A.</creator><creator>Jacobs, Tevis D.B.</creator><creator>Khanal, Subarna R.</creator><creator>Streller, Frank</creator><creator>McClimon, J. Brandon</creator><creator>Hilbert, James</creator><creator>Prasad, Somuri V.</creator><creator>Scharf, Thomas W.</creator><creator>Ohlhausen, James A.</creator><creator>Lukes, Jennifer R.</creator><creator>Sawyer, W. Gregory</creator><creator>Carpick, Robert W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid></search><sort><creationdate>201804</creationdate><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><author>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace industry</topic><topic>Amorphous carbon-based materials</topic><topic>Amorphous materials</topic><topic>Carbon</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Hydrogenation</topic><topic>International Space Station</topic><topic>Low earth orbit</topic><topic>Low earth orbits</topic><topic>Materials durability</topic><topic>Near edge X-ray absorption fine structure spectroscopy</topic><topic>Optical properties</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Silicon- and oxygen-containing hydrogenated amorphous carbon</topic><topic>Studies</topic><topic>Thermal stability</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Krick, Brandon A.</creatorcontrib><creatorcontrib>Jacobs, Tevis D.B.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Streller, Frank</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Prasad, Somuri V.</creatorcontrib><creatorcontrib>Scharf, Thomas W.</creatorcontrib><creatorcontrib>Ohlhausen, James A.</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangolini, Filippo</au><au>Krick, Brandon A.</au><au>Jacobs, Tevis D.B.</au><au>Khanal, Subarna R.</au><au>Streller, Frank</au><au>McClimon, J. Brandon</au><au>Hilbert, James</au><au>Prasad, Somuri V.</au><au>Scharf, Thomas W.</au><au>Ohlhausen, James A.</au><au>Lukes, Jennifer R.</au><au>Sawyer, W. Gregory</au><au>Carpick, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</atitle><jtitle>Carbon (New York)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>130</volume><spage>127</spage><epage>136</epage><pages>127-136</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H. A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.12.096</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2018-04, Vol.130, p.127-136
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2048536864
source Elsevier ScienceDirect Journals
subjects Aerospace industry
Amorphous carbon-based materials
Amorphous materials
Carbon
Heat conductivity
High temperature
Hydrogenation
International Space Station
Low earth orbit
Low earth orbits
Materials durability
Near edge X-ray absorption fine structure spectroscopy
Optical properties
Oxidation resistance
Oxygen
Protective coatings
Residual stress
Silicon
Silicon dioxide
Silicon- and oxygen-containing hydrogenated amorphous carbon
Studies
Thermal stability
X-ray photoelectron spectroscopy
title Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20silicon%20and%20oxygen%20dopants%20on%20the%20stability%20of%20hydrogenated%20amorphous%20carbon%20under%20harsh%20environmental%20conditions&rft.jtitle=Carbon%20(New%20York)&rft.au=Mangolini,%20Filippo&rft.date=2018-04&rft.volume=130&rft.spage=127&rft.epage=136&rft.pages=127-136&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.12.096&rft_dat=%3Cproquest_cross%3E2048536864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048536864&rft_id=info:pmid/&rft_els_id=S0008622317313295&rfr_iscdi=true