Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions
Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical proper...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2018-04, Vol.130, p.127-136 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 127 |
container_title | Carbon (New York) |
container_volume | 130 |
creator | Mangolini, Filippo Krick, Brandon A. Jacobs, Tevis D.B. Khanal, Subarna R. Streller, Frank McClimon, J. Brandon Hilbert, James Prasad, Somuri V. Scharf, Thomas W. Ohlhausen, James A. Lukes, Jennifer R. Sawyer, W. Gregory Carpick, Robert W. |
description | Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.
A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.12.096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048536864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622317313295</els_id><sourcerecordid>2048536864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgIMoWKv_wEPA865JdjfdvQhS6gMKXvQcZvNwU9qkJtli8c-bsp49DTN88_oQuqWkpITy-00pIfTelYzQRUlZSTp-hma0XVRF1Xb0HM0IIW3BGasu0VWMm5zWLa1n6GdljJYJe4Oj3VrpHQansP8-fmqHld-DSxHnaho0jgn6DKXjCR-OKvgMQdIKw86H_eDHiKdL8OiUDniAEAes3cEG73baJdjivELZZL2L1-jCwDbqm784Rx9Pq_flS7F-e35dPq4LWbUkFb3qGAAD2TQGqCEVkaQnZEGgb7sOqGIN603DeWNMV9WULbqatjU3fadAc6jm6G6auw_-a9QxiY0fg8srBcsamoq3vM5UPVEy-BiDNmIf7A7CUVAiTprFRkzPiZNmQZnImnPbw9Sm8wcHq4OI0montbIhixXK2_8H_AJzaIrN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048536864</pqid></control><display><type>article</type><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</creator><creatorcontrib>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</creatorcontrib><description>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.
A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.12.096</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aerospace industry ; Amorphous carbon-based materials ; Amorphous materials ; Carbon ; Heat conductivity ; High temperature ; Hydrogenation ; International Space Station ; Low earth orbit ; Low earth orbits ; Materials durability ; Near edge X-ray absorption fine structure spectroscopy ; Optical properties ; Oxidation resistance ; Oxygen ; Protective coatings ; Residual stress ; Silicon ; Silicon dioxide ; Silicon- and oxygen-containing hydrogenated amorphous carbon ; Studies ; Thermal stability ; X-ray photoelectron spectroscopy</subject><ispartof>Carbon (New York), 2018-04, Vol.130, p.127-136</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</citedby><cites>FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</cites><orcidid>0000-0003-3360-9122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622317313295$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Krick, Brandon A.</creatorcontrib><creatorcontrib>Jacobs, Tevis D.B.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Streller, Frank</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Prasad, Somuri V.</creatorcontrib><creatorcontrib>Scharf, Thomas W.</creatorcontrib><creatorcontrib>Ohlhausen, James A.</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><title>Carbon (New York)</title><description>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.
A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</description><subject>Aerospace industry</subject><subject>Amorphous carbon-based materials</subject><subject>Amorphous materials</subject><subject>Carbon</subject><subject>Heat conductivity</subject><subject>High temperature</subject><subject>Hydrogenation</subject><subject>International Space Station</subject><subject>Low earth orbit</subject><subject>Low earth orbits</subject><subject>Materials durability</subject><subject>Near edge X-ray absorption fine structure spectroscopy</subject><subject>Optical properties</subject><subject>Oxidation resistance</subject><subject>Oxygen</subject><subject>Protective coatings</subject><subject>Residual stress</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Silicon- and oxygen-containing hydrogenated amorphous carbon</subject><subject>Studies</subject><subject>Thermal stability</subject><subject>X-ray photoelectron spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQgIMoWKv_wEPA865JdjfdvQhS6gMKXvQcZvNwU9qkJtli8c-bsp49DTN88_oQuqWkpITy-00pIfTelYzQRUlZSTp-hma0XVRF1Xb0HM0IIW3BGasu0VWMm5zWLa1n6GdljJYJe4Oj3VrpHQansP8-fmqHld-DSxHnaho0jgn6DKXjCR-OKvgMQdIKw86H_eDHiKdL8OiUDniAEAes3cEG73baJdjivELZZL2L1-jCwDbqm784Rx9Pq_flS7F-e35dPq4LWbUkFb3qGAAD2TQGqCEVkaQnZEGgb7sOqGIN603DeWNMV9WULbqatjU3fadAc6jm6G6auw_-a9QxiY0fg8srBcsamoq3vM5UPVEy-BiDNmIf7A7CUVAiTprFRkzPiZNmQZnImnPbw9Sm8wcHq4OI0montbIhixXK2_8H_AJzaIrN</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Mangolini, Filippo</creator><creator>Krick, Brandon A.</creator><creator>Jacobs, Tevis D.B.</creator><creator>Khanal, Subarna R.</creator><creator>Streller, Frank</creator><creator>McClimon, J. Brandon</creator><creator>Hilbert, James</creator><creator>Prasad, Somuri V.</creator><creator>Scharf, Thomas W.</creator><creator>Ohlhausen, James A.</creator><creator>Lukes, Jennifer R.</creator><creator>Sawyer, W. Gregory</creator><creator>Carpick, Robert W.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid></search><sort><creationdate>201804</creationdate><title>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</title><author>Mangolini, Filippo ; Krick, Brandon A. ; Jacobs, Tevis D.B. ; Khanal, Subarna R. ; Streller, Frank ; McClimon, J. Brandon ; Hilbert, James ; Prasad, Somuri V. ; Scharf, Thomas W. ; Ohlhausen, James A. ; Lukes, Jennifer R. ; Sawyer, W. Gregory ; Carpick, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-bd92aa2ac55fa1f030c0b0070ab899a1d252bf5665ff934127941846fb9dae6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace industry</topic><topic>Amorphous carbon-based materials</topic><topic>Amorphous materials</topic><topic>Carbon</topic><topic>Heat conductivity</topic><topic>High temperature</topic><topic>Hydrogenation</topic><topic>International Space Station</topic><topic>Low earth orbit</topic><topic>Low earth orbits</topic><topic>Materials durability</topic><topic>Near edge X-ray absorption fine structure spectroscopy</topic><topic>Optical properties</topic><topic>Oxidation resistance</topic><topic>Oxygen</topic><topic>Protective coatings</topic><topic>Residual stress</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Silicon- and oxygen-containing hydrogenated amorphous carbon</topic><topic>Studies</topic><topic>Thermal stability</topic><topic>X-ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Krick, Brandon A.</creatorcontrib><creatorcontrib>Jacobs, Tevis D.B.</creatorcontrib><creatorcontrib>Khanal, Subarna R.</creatorcontrib><creatorcontrib>Streller, Frank</creatorcontrib><creatorcontrib>McClimon, J. Brandon</creatorcontrib><creatorcontrib>Hilbert, James</creatorcontrib><creatorcontrib>Prasad, Somuri V.</creatorcontrib><creatorcontrib>Scharf, Thomas W.</creatorcontrib><creatorcontrib>Ohlhausen, James A.</creatorcontrib><creatorcontrib>Lukes, Jennifer R.</creatorcontrib><creatorcontrib>Sawyer, W. Gregory</creatorcontrib><creatorcontrib>Carpick, Robert W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangolini, Filippo</au><au>Krick, Brandon A.</au><au>Jacobs, Tevis D.B.</au><au>Khanal, Subarna R.</au><au>Streller, Frank</au><au>McClimon, J. Brandon</au><au>Hilbert, James</au><au>Prasad, Somuri V.</au><au>Scharf, Thomas W.</au><au>Ohlhausen, James A.</au><au>Lukes, Jennifer R.</au><au>Sawyer, W. Gregory</au><au>Carpick, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions</atitle><jtitle>Carbon (New York)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>130</volume><spage>127</spage><epage>136</epage><pages>127-136</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Harsh environments pose materials durability challenges across the automotive, aerospace, and manufacturing sectors, and beyond. While amorphous carbon materials have been used as coatings in many environmentally-demanding applications owing to their unique mechanical, electrical, and optical properties, their limited thermal stability and high reactivity in oxidizing environments have impeded their use in many technologies. Silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) films are promising for several applications because of their higher thermal stability and lower residual stress compared to hydrogenated amorphous carbon (a-C:H). However, an understanding of their superior thermo-oxidative stability compared to a-C:H is lacking, as it has been inhibited by the intrinsic challenge of characterizing an amorphous, multi-component material. Here, we show that introducing silicon and oxygen in a-C:H slightly enhances the thermal stability in vacuum, but tremendously increases the thermo-oxidative stability and the resistance to degradation upon exposure to the harsh conditions of low Earth orbit (LEO). The latter is demonstrated by having mounted samples of a-C:H:Si:O on the exterior of the International Space Station via the Materials International Space Station (MISSE) mission 7b. Exposing lightly-doped a-C:H:Si:O to elevated temperatures under aerobic conditions or to LEO causes carbon volatilization in the near-surface region, producing a silica surface layer that protects the underlying carbon from further removal. These findings provide a novel physically-based understanding of the superior stability of a-C:H:Si:O in harsh environments compared to a-C:H.
A silicon- and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) coating was exposed to the harsh conditions of the low Earth orbit (LEO) environment (hyperthermal atomic oxygen, thermal cycling, ultraviolet radiation) aboard the International Space Station. X-ray photoelectron spectroscopy measurements indicated degradation of the near-surface region of a-C:H:Si:O through breakage and subsequent oxidation of carbon-carbon bonds as well as formation of a silica layer (shift of the silicon 2p signal to higher binding energies). [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.12.096</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3360-9122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2018-04, Vol.130, p.127-136 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_2048536864 |
source | Elsevier ScienceDirect Journals |
subjects | Aerospace industry Amorphous carbon-based materials Amorphous materials Carbon Heat conductivity High temperature Hydrogenation International Space Station Low earth orbit Low earth orbits Materials durability Near edge X-ray absorption fine structure spectroscopy Optical properties Oxidation resistance Oxygen Protective coatings Residual stress Silicon Silicon dioxide Silicon- and oxygen-containing hydrogenated amorphous carbon Studies Thermal stability X-ray photoelectron spectroscopy |
title | Effect of silicon and oxygen dopants on the stability of hydrogenated amorphous carbon under harsh environmental conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20silicon%20and%20oxygen%20dopants%20on%20the%20stability%20of%20hydrogenated%20amorphous%20carbon%20under%20harsh%20environmental%20conditions&rft.jtitle=Carbon%20(New%20York)&rft.au=Mangolini,%20Filippo&rft.date=2018-04&rft.volume=130&rft.spage=127&rft.epage=136&rft.pages=127-136&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.12.096&rft_dat=%3Cproquest_cross%3E2048536864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048536864&rft_id=info:pmid/&rft_els_id=S0008622317313295&rfr_iscdi=true |