Sieve maximum likelihood estimation of the spatial autoregressive Tobit model
This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that th...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2018-03, Vol.203 (1), p.96-112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | Journal of econometrics |
container_volume | 203 |
creator | Xu, Xingbai Lee, Lung-fei |
description | This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection.
Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed. |
doi_str_mv | 10.1016/j.jeconom.2017.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048526584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407617302385</els_id><sourcerecordid>2048526584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThIDnrvls05PI4heseHA9hzSduqltsybtov_eLLt3GZhhhnlv5j2ErilZUELz23bRgvWD7xeM0CLNFoSoEzSjqmBZrkp5imaEE5EJUuTn6CLGlhAiheIz9PruYAe4Nz-un3rcuS_o3Mb7GkMcXW9G5wfsGzxuAMdtak2HzTT6AJ8BYnQJu_aVG3Hva-gu0VljughXxzpHH48P6-Vztnp7elnerzIrCBszKrlhllCac24rLihjUqasGtHQJi9lYYFDaatKstIoW5dFipoUlc1NSRmfo5sD7zb47yl9qls_hSGd1IwIJVkulUhb8rBlg48xQKO3IUkKv5oSvXdOt_ronN47tx8n5xLu7oCDJGHnIOhoHQwWahfAjrr27h-GP0TVebk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048526584</pqid></control><display><type>article</type><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Xingbai ; Lee, Lung-fei</creator><creatorcontrib>Xu, Xingbai ; Lee, Lung-fei</creatorcontrib><description>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection.
Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2017.10.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Central limit theorem ; Econometrics ; Estimating techniques ; Inequality ; Maximum likelihood method ; Near-epoch dependence ; Regression analysis ; School districts ; Sieve maximum likelihood estimation ; Simulation ; Social network ; Spatial autoregressive model ; Spillover effect ; Studies ; Tobit model</subject><ispartof>Journal of econometrics, 2018-03, Vol.203 (1), p.96-112</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</citedby><cites>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2017.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Xingbai</creatorcontrib><creatorcontrib>Lee, Lung-fei</creatorcontrib><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><title>Journal of econometrics</title><description>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection.
Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</description><subject>Asymptotic methods</subject><subject>Central limit theorem</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Inequality</subject><subject>Maximum likelihood method</subject><subject>Near-epoch dependence</subject><subject>Regression analysis</subject><subject>School districts</subject><subject>Sieve maximum likelihood estimation</subject><subject>Simulation</subject><subject>Social network</subject><subject>Spatial autoregressive model</subject><subject>Spillover effect</subject><subject>Studies</subject><subject>Tobit model</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThIDnrvls05PI4heseHA9hzSduqltsybtov_eLLt3GZhhhnlv5j2ErilZUELz23bRgvWD7xeM0CLNFoSoEzSjqmBZrkp5imaEE5EJUuTn6CLGlhAiheIz9PruYAe4Nz-un3rcuS_o3Mb7GkMcXW9G5wfsGzxuAMdtak2HzTT6AJ8BYnQJu_aVG3Hva-gu0VljughXxzpHH48P6-Vztnp7elnerzIrCBszKrlhllCac24rLihjUqasGtHQJi9lYYFDaatKstIoW5dFipoUlc1NSRmfo5sD7zb47yl9qls_hSGd1IwIJVkulUhb8rBlg48xQKO3IUkKv5oSvXdOt_ronN47tx8n5xLu7oCDJGHnIOhoHQwWahfAjrr27h-GP0TVebk</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Xu, Xingbai</creator><creator>Lee, Lung-fei</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180301</creationdate><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><author>Xu, Xingbai ; Lee, Lung-fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Central limit theorem</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Inequality</topic><topic>Maximum likelihood method</topic><topic>Near-epoch dependence</topic><topic>Regression analysis</topic><topic>School districts</topic><topic>Sieve maximum likelihood estimation</topic><topic>Simulation</topic><topic>Social network</topic><topic>Spatial autoregressive model</topic><topic>Spillover effect</topic><topic>Studies</topic><topic>Tobit model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xingbai</creatorcontrib><creatorcontrib>Lee, Lung-fei</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xingbai</au><au>Lee, Lung-fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</atitle><jtitle>Journal of econometrics</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>203</volume><issue>1</issue><spage>96</spage><epage>112</epage><pages>96-112</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection.
Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2017.10.008</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2018-03, Vol.203 (1), p.96-112 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2048526584 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Asymptotic methods Central limit theorem Econometrics Estimating techniques Inequality Maximum likelihood method Near-epoch dependence Regression analysis School districts Sieve maximum likelihood estimation Simulation Social network Spatial autoregressive model Spillover effect Studies Tobit model |
title | Sieve maximum likelihood estimation of the spatial autoregressive Tobit model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sieve%20maximum%20likelihood%20estimation%20of%20the%20spatial%20autoregressive%20Tobit%20model&rft.jtitle=Journal%20of%20econometrics&rft.au=Xu,%20Xingbai&rft.date=2018-03-01&rft.volume=203&rft.issue=1&rft.spage=96&rft.epage=112&rft.pages=96-112&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2017.10.008&rft_dat=%3Cproquest_cross%3E2048526584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048526584&rft_id=info:pmid/&rft_els_id=S0304407617302385&rfr_iscdi=true |