Sieve maximum likelihood estimation of the spatial autoregressive Tobit model

This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2018-03, Vol.203 (1), p.96-112
Hauptverfasser: Xu, Xingbai, Lee, Lung-fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 96
container_title Journal of econometrics
container_volume 203
creator Xu, Xingbai
Lee, Lung-fei
description This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection. Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.
doi_str_mv 10.1016/j.jeconom.2017.10.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048526584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407617302385</els_id><sourcerecordid>2048526584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvoThIDnrvls05PI4heseHA9hzSduqltsybtov_eLLt3GZhhhnlv5j2ErilZUELz23bRgvWD7xeM0CLNFoSoEzSjqmBZrkp5imaEE5EJUuTn6CLGlhAiheIz9PruYAe4Nz-un3rcuS_o3Mb7GkMcXW9G5wfsGzxuAMdtak2HzTT6AJ8BYnQJu_aVG3Hva-gu0VljughXxzpHH48P6-Vztnp7elnerzIrCBszKrlhllCac24rLihjUqasGtHQJi9lYYFDaatKstIoW5dFipoUlc1NSRmfo5sD7zb47yl9qls_hSGd1IwIJVkulUhb8rBlg48xQKO3IUkKv5oSvXdOt_ronN47tx8n5xLu7oCDJGHnIOhoHQwWahfAjrr27h-GP0TVebk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048526584</pqid></control><display><type>article</type><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Xingbai ; Lee, Lung-fei</creator><creatorcontrib>Xu, Xingbai ; Lee, Lung-fei</creatorcontrib><description>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection. Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2017.10.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Central limit theorem ; Econometrics ; Estimating techniques ; Inequality ; Maximum likelihood method ; Near-epoch dependence ; Regression analysis ; School districts ; Sieve maximum likelihood estimation ; Simulation ; Social network ; Spatial autoregressive model ; Spillover effect ; Studies ; Tobit model</subject><ispartof>Journal of econometrics, 2018-03, Vol.203 (1), p.96-112</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</citedby><cites>FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2017.10.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Xingbai</creatorcontrib><creatorcontrib>Lee, Lung-fei</creatorcontrib><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><title>Journal of econometrics</title><description>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection. Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</description><subject>Asymptotic methods</subject><subject>Central limit theorem</subject><subject>Econometrics</subject><subject>Estimating techniques</subject><subject>Inequality</subject><subject>Maximum likelihood method</subject><subject>Near-epoch dependence</subject><subject>Regression analysis</subject><subject>School districts</subject><subject>Sieve maximum likelihood estimation</subject><subject>Simulation</subject><subject>Social network</subject><subject>Spatial autoregressive model</subject><subject>Spillover effect</subject><subject>Studies</subject><subject>Tobit model</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvoThIDnrvls05PI4heseHA9hzSduqltsybtov_eLLt3GZhhhnlv5j2ErilZUELz23bRgvWD7xeM0CLNFoSoEzSjqmBZrkp5imaEE5EJUuTn6CLGlhAiheIz9PruYAe4Nz-un3rcuS_o3Mb7GkMcXW9G5wfsGzxuAMdtak2HzTT6AJ8BYnQJu_aVG3Hva-gu0VljughXxzpHH48P6-Vztnp7elnerzIrCBszKrlhllCac24rLihjUqasGtHQJi9lYYFDaatKstIoW5dFipoUlc1NSRmfo5sD7zb47yl9qls_hSGd1IwIJVkulUhb8rBlg48xQKO3IUkKv5oSvXdOt_ronN47tx8n5xLu7oCDJGHnIOhoHQwWahfAjrr27h-GP0TVebk</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Xu, Xingbai</creator><creator>Lee, Lung-fei</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180301</creationdate><title>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</title><author>Xu, Xingbai ; Lee, Lung-fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-153a2c011633cb34122554128f4f1f6957ce3e9cbb529a8cd97979d07bc6a9123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Central limit theorem</topic><topic>Econometrics</topic><topic>Estimating techniques</topic><topic>Inequality</topic><topic>Maximum likelihood method</topic><topic>Near-epoch dependence</topic><topic>Regression analysis</topic><topic>School districts</topic><topic>Sieve maximum likelihood estimation</topic><topic>Simulation</topic><topic>Social network</topic><topic>Spatial autoregressive model</topic><topic>Spillover effect</topic><topic>Studies</topic><topic>Tobit model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xingbai</creatorcontrib><creatorcontrib>Lee, Lung-fei</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xingbai</au><au>Lee, Lung-fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sieve maximum likelihood estimation of the spatial autoregressive Tobit model</atitle><jtitle>Journal of econometrics</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>203</volume><issue>1</issue><spage>96</spage><epage>112</epage><pages>96-112</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper extends the ML estimation of a spatial autoregressive Tobit model under normal disturbances in Xu and Lee (2015b, Journal of Econometrics) to distribution-free estimation. We examine the sieve MLE of the model, where the disturbances are i.i.d.with an unknown distribution. We show that the spatial autoregressive process with Tobit censoring and related variables are spatial near-epoch dependent (NED). A related contribution is that we develop some exponential inequalities for spatial NED random fields. With these inequalities, we establish the consistency of the estimator. Asymptotic distributions of structural parameters of the model are derived from a functional central limit theorem and projection. Simulations show that the sieve MLE can improve the finite sample performance upon misspecified normal MLEs. As an empirical application, we examine the school district income surtax rates in Iowa. Our results show that the spatial spillover effects are significant, but they may be overestimated if disturbances are restricted to be normally distributed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2017.10.008</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2018-03, Vol.203 (1), p.96-112
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2048526584
source ScienceDirect Journals (5 years ago - present)
subjects Asymptotic methods
Central limit theorem
Econometrics
Estimating techniques
Inequality
Maximum likelihood method
Near-epoch dependence
Regression analysis
School districts
Sieve maximum likelihood estimation
Simulation
Social network
Spatial autoregressive model
Spillover effect
Studies
Tobit model
title Sieve maximum likelihood estimation of the spatial autoregressive Tobit model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sieve%20maximum%20likelihood%20estimation%20of%20the%20spatial%20autoregressive%20Tobit%20model&rft.jtitle=Journal%20of%20econometrics&rft.au=Xu,%20Xingbai&rft.date=2018-03-01&rft.volume=203&rft.issue=1&rft.spage=96&rft.epage=112&rft.pages=96-112&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2017.10.008&rft_dat=%3Cproquest_cross%3E2048526584%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048526584&rft_id=info:pmid/&rft_els_id=S0304407617302385&rfr_iscdi=true