Full Bayesian analysis of claims reserving uncertainty

We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2017-03, Vol.73, p.41-53
Hauptverfasser: Peters, Gareth W., Targino, Rodrigo S., Wüthrich, Mario V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 41
container_title Insurance, mathematics & economics
container_volume 73
creator Peters, Gareth W.
Targino, Rodrigo S.
Wüthrich, Mario V.
description We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows us for closed form solutions. The main purpose of this paper is to develop the full Bayesian case also considering prior distributions for the variance parameters and to study the resulting sensitivities.
doi_str_mv 10.1016/j.insmatheco.2016.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2048526522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016766871630213X</els_id><sourcerecordid>2048526522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-3a070d3567f7a292ec701a0f426bb0edacfbf55086e93280b7c41aae8b47a6483</originalsourceid><addsrcrecordid>eNqFkEFLxDAQhYMouK7-h4Ln1knaJunRXVwVFrzoOUzTqWbptmvSLvTfm2UFj54GZt57zPsYSzhkHLh82GWuD3scv8gOmYibjIsMQF2wBdcqT8uqrC7ZIh5UKqVW1-wmhB0A8EqqBZObqeuSFc4UHPYJ9tjNwYVkaBPboduHxFMgf3T9ZzL1lvyIrh_nW3bVYhfo7ncu2cfm6X39km7fnl_Xj9vUFhLGNEdQ0OSlVK1CUQmyCjhCWwhZ10AN2rZuyxK0pCoXGmplC45Iui4UykLnS3Z_zj344XuiMJrdMPn4ZDACCl0KWQoRVfqssn4IwVNrDt7t0c-GgzlRMjvzR8mcKBkuTKQUrauzlWKLoyNvgnUUizbOkx1NM7j_Q34ACjh1jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048526522</pqid></control><display><type>article</type><title>Full Bayesian analysis of claims reserving uncertainty</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Peters, Gareth W. ; Targino, Rodrigo S. ; Wüthrich, Mario V.</creator><creatorcontrib>Peters, Gareth W. ; Targino, Rodrigo S. ; Wüthrich, Mario V.</creatorcontrib><description>We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows us for closed form solutions. The main purpose of this paper is to develop the full Bayesian case also considering prior distributions for the variance parameters and to study the resulting sensitivities.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2016.12.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Bayesian analysis ; Chain-ladder method ; Claims ; Claims development result ; Claims reserving uncertainty ; Conditional mean square error of prediction ; Empirical analysis ; Full Bayesian chain-ladder model ; Life insurance ; Mack’s formula ; Mathematical models ; Mean square errors ; Merz–Wüthrich’s formula ; Parameter estimation ; Parameter sensitivity ; Run-off uncertainty ; Uncertainty ; Variance analysis</subject><ispartof>Insurance, mathematics &amp; economics, 2017-03, Vol.73, p.41-53</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-3a070d3567f7a292ec701a0f426bb0edacfbf55086e93280b7c41aae8b47a6483</citedby><cites>FETCH-LOGICAL-c460t-3a070d3567f7a292ec701a0f426bb0edacfbf55086e93280b7c41aae8b47a6483</cites><orcidid>0000-0002-0027-3311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2016.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Peters, Gareth W.</creatorcontrib><creatorcontrib>Targino, Rodrigo S.</creatorcontrib><creatorcontrib>Wüthrich, Mario V.</creatorcontrib><title>Full Bayesian analysis of claims reserving uncertainty</title><title>Insurance, mathematics &amp; economics</title><description>We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows us for closed form solutions. The main purpose of this paper is to develop the full Bayesian case also considering prior distributions for the variance parameters and to study the resulting sensitivities.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Chain-ladder method</subject><subject>Claims</subject><subject>Claims development result</subject><subject>Claims reserving uncertainty</subject><subject>Conditional mean square error of prediction</subject><subject>Empirical analysis</subject><subject>Full Bayesian chain-ladder model</subject><subject>Life insurance</subject><subject>Mack’s formula</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Merz–Wüthrich’s formula</subject><subject>Parameter estimation</subject><subject>Parameter sensitivity</subject><subject>Run-off uncertainty</subject><subject>Uncertainty</subject><subject>Variance analysis</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQhYMouK7-h4Ln1knaJunRXVwVFrzoOUzTqWbptmvSLvTfm2UFj54GZt57zPsYSzhkHLh82GWuD3scv8gOmYibjIsMQF2wBdcqT8uqrC7ZIh5UKqVW1-wmhB0A8EqqBZObqeuSFc4UHPYJ9tjNwYVkaBPboduHxFMgf3T9ZzL1lvyIrh_nW3bVYhfo7ncu2cfm6X39km7fnl_Xj9vUFhLGNEdQ0OSlVK1CUQmyCjhCWwhZ10AN2rZuyxK0pCoXGmplC45Iui4UykLnS3Z_zj344XuiMJrdMPn4ZDACCl0KWQoRVfqssn4IwVNrDt7t0c-GgzlRMjvzR8mcKBkuTKQUrauzlWKLoyNvgnUUizbOkx1NM7j_Q34ACjh1jQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Peters, Gareth W.</creator><creator>Targino, Rodrigo S.</creator><creator>Wüthrich, Mario V.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0027-3311</orcidid></search><sort><creationdate>20170301</creationdate><title>Full Bayesian analysis of claims reserving uncertainty</title><author>Peters, Gareth W. ; Targino, Rodrigo S. ; Wüthrich, Mario V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-3a070d3567f7a292ec701a0f426bb0edacfbf55086e93280b7c41aae8b47a6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Chain-ladder method</topic><topic>Claims</topic><topic>Claims development result</topic><topic>Claims reserving uncertainty</topic><topic>Conditional mean square error of prediction</topic><topic>Empirical analysis</topic><topic>Full Bayesian chain-ladder model</topic><topic>Life insurance</topic><topic>Mack’s formula</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Merz–Wüthrich’s formula</topic><topic>Parameter estimation</topic><topic>Parameter sensitivity</topic><topic>Run-off uncertainty</topic><topic>Uncertainty</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Gareth W.</creatorcontrib><creatorcontrib>Targino, Rodrigo S.</creatorcontrib><creatorcontrib>Wüthrich, Mario V.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Gareth W.</au><au>Targino, Rodrigo S.</au><au>Wüthrich, Mario V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full Bayesian analysis of claims reserving uncertainty</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>73</volume><spage>41</spage><epage>53</epage><pages>41-53</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>We revisit the gamma–gamma Bayesian chain-ladder (BCL) model for claims reserving in non-life insurance. This claims reserving model is usually used in an empirical Bayesian way using plug-in estimates for the variance parameters. The advantage of this empirical Bayesian framework is that allows us for closed form solutions. The main purpose of this paper is to develop the full Bayesian case also considering prior distributions for the variance parameters and to study the resulting sensitivities.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2016.12.007</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0027-3311</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2017-03, Vol.73, p.41-53
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_2048526522
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Bayesian analysis
Chain-ladder method
Claims
Claims development result
Claims reserving uncertainty
Conditional mean square error of prediction
Empirical analysis
Full Bayesian chain-ladder model
Life insurance
Mack’s formula
Mathematical models
Mean square errors
Merz–Wüthrich’s formula
Parameter estimation
Parameter sensitivity
Run-off uncertainty
Uncertainty
Variance analysis
title Full Bayesian analysis of claims reserving uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T14%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full%20Bayesian%20analysis%20of%20claims%20reserving%20uncertainty&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Peters,%20Gareth%20W.&rft.date=2017-03-01&rft.volume=73&rft.spage=41&rft.epage=53&rft.pages=41-53&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2016.12.007&rft_dat=%3Cproquest_cross%3E2048526522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048526522&rft_id=info:pmid/&rft_els_id=S016766871630213X&rfr_iscdi=true