One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling

The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and a one-bit symbol-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2018-06, Vol.12 (3), p.557-570
Hauptverfasser: Sohrabi, Foad, Liu, Ya-Feng, Yu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 570
container_issue 3
container_start_page 557
container_title IEEE journal of selected topics in signal processing
container_volume 12
creator Sohrabi, Foad
Liu, Ya-Feng
Yu, Wei
description The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and a one-bit symbol-level precoding design problem for minimizing the average symbol error rate (SER) in downlink massive MIMO transmission. A tight upper bound for the SER with low-resolution DAC precoding is first derived. The derived expression suggests that the performance degradation of one-bit precoding can be interpreted as a decrease in the effective minimum distance of the QAM constellation. Using the obtained SER expression, we propose a QAM constellation range design for the single-user case. It is shown that in the massive MIMO limit, a reasonable choice for constellation range with one-bit precoding is that of the infinite-resolution precoding with per-symbol power constraint, but reduced by a factor of \sqrt{2/\pi } or about 0.8. The corresponding minimum distance reduction translates to about a 2 dB gap between the performance of one-bit precoding and infinite-resolution precoding. This paper further proposes a low-complexity heuristic algorithm for the one-bit precoder design. Finally, the proposed QAM constellation range and precoder design are generalized to the multiuser downlink. We propose to scale the constellation range for the infinite-resolution zero-forcing (ZF) precoding with per-symbol power constraint by the same factor of \sqrt{2/\pi } for one-bit precoding. The proposed one-bit precoding scheme is shown to be within 2 dB of infinite-resolution ZF. In term of number of antennas, one-bit precoding requires about 50% more antennas to achieve the same performance as infinite-resolution precoding.
doi_str_mv 10.1109/JSTSP.2018.2823267
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2048169055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8331077</ieee_id><sourcerecordid>2048169055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d508847ba21d1104da53ca4c7db98fa55629a6db6f41c7957f1e537bf1eb11e83</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-BiiXOK14_YOZbyKmrUQos4Wk7iFFclKXaKxL_HpRWnWWl3RjsfQpdABgAku3meL-azASWgBlRRRlN5hHqQcUgIV_x4NzOacCHYKToLYUWIkCnwHlpMG5vcug7PvC3byjVLbJoKj9omdHa9Np1rG_xqmqXFdza4ZYPr1uPchOC-Lc7H-RS_u-4DvwxzPI9rs44R5-ikNutgLw7aR28P94vRUzKZPo5Hw0lS0kx0SSWIUlwWhkIVW_DKCFYaXsqqyFRthEhpZtKqSGsOpcyErMEKJosoBYBVrI-u97kb335tbej0qt36-EPQNPaGNCOxcR_R_VXp2xC8rfXGu0_jfzQQvaOn_-jpHT19oBdNV3uTs9b-GxRjQKRkv4qKajs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2048169055</pqid></control><display><type>article</type><title>One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling</title><source>IEEE Electronic Library (IEL)</source><creator>Sohrabi, Foad ; Liu, Ya-Feng ; Yu, Wei</creator><creatorcontrib>Sohrabi, Foad ; Liu, Ya-Feng ; Yu, Wei</creatorcontrib><description><![CDATA[The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and a one-bit symbol-level precoding design problem for minimizing the average symbol error rate (SER) in downlink massive MIMO transmission. A tight upper bound for the SER with low-resolution DAC precoding is first derived. The derived expression suggests that the performance degradation of one-bit precoding can be interpreted as a decrease in the effective minimum distance of the QAM constellation. Using the obtained SER expression, we propose a QAM constellation range design for the single-user case. It is shown that in the massive MIMO limit, a reasonable choice for constellation range with one-bit precoding is that of the infinite-resolution precoding with per-symbol power constraint, but reduced by a factor of <inline-formula> <tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> or about 0.8. The corresponding minimum distance reduction translates to about a 2 dB gap between the performance of one-bit precoding and infinite-resolution precoding. This paper further proposes a low-complexity heuristic algorithm for the one-bit precoder design. Finally, the proposed QAM constellation range and precoder design are generalized to the multiuser downlink. We propose to scale the constellation range for the infinite-resolution zero-forcing (ZF) precoding with per-symbol power constraint by the same factor of <inline-formula><tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> for one-bit precoding. The proposed one-bit precoding scheme is shown to be within 2 dB of infinite-resolution ZF. In term of number of antennas, one-bit precoding requires about 50% more antennas to achieve the same performance as infinite-resolution precoding.]]></description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2018.2823267</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Codes ; Digital to analog conversion ; Digital to analog converters ; Downlink ; Energy conversion efficiency ; Energy transmission ; Heuristic methods ; Low-resolution digital-to-analog converter (DAC) ; massive multiple-input multiple-output (MIMO) ; MIMO communication ; one-bit precoding ; Performance degradation ; Precoding ; Quadrature amplitude modulation ; quadrature amplitude modulation (QAM) ; Receivers ; Signal processing algorithms ; symbol error rate (SER) ; symbol-level precoding ; Upper bounds ; zero-forcing (ZF)</subject><ispartof>IEEE journal of selected topics in signal processing, 2018-06, Vol.12 (3), p.557-570</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d508847ba21d1104da53ca4c7db98fa55629a6db6f41c7957f1e537bf1eb11e83</citedby><cites>FETCH-LOGICAL-c295t-d508847ba21d1104da53ca4c7db98fa55629a6db6f41c7957f1e537bf1eb11e83</cites><orcidid>0000-0002-7514-2578 ; 0000-0002-7453-422X ; 0000-0002-9684-9150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8331077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8331077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sohrabi, Foad</creatorcontrib><creatorcontrib>Liu, Ya-Feng</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><title>One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description><![CDATA[The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and a one-bit symbol-level precoding design problem for minimizing the average symbol error rate (SER) in downlink massive MIMO transmission. A tight upper bound for the SER with low-resolution DAC precoding is first derived. The derived expression suggests that the performance degradation of one-bit precoding can be interpreted as a decrease in the effective minimum distance of the QAM constellation. Using the obtained SER expression, we propose a QAM constellation range design for the single-user case. It is shown that in the massive MIMO limit, a reasonable choice for constellation range with one-bit precoding is that of the infinite-resolution precoding with per-symbol power constraint, but reduced by a factor of <inline-formula> <tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> or about 0.8. The corresponding minimum distance reduction translates to about a 2 dB gap between the performance of one-bit precoding and infinite-resolution precoding. This paper further proposes a low-complexity heuristic algorithm for the one-bit precoder design. Finally, the proposed QAM constellation range and precoder design are generalized to the multiuser downlink. We propose to scale the constellation range for the infinite-resolution zero-forcing (ZF) precoding with per-symbol power constraint by the same factor of <inline-formula><tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> for one-bit precoding. The proposed one-bit precoding scheme is shown to be within 2 dB of infinite-resolution ZF. In term of number of antennas, one-bit precoding requires about 50% more antennas to achieve the same performance as infinite-resolution precoding.]]></description><subject>Antennas</subject><subject>Codes</subject><subject>Digital to analog conversion</subject><subject>Digital to analog converters</subject><subject>Downlink</subject><subject>Energy conversion efficiency</subject><subject>Energy transmission</subject><subject>Heuristic methods</subject><subject>Low-resolution digital-to-analog converter (DAC)</subject><subject>massive multiple-input multiple-output (MIMO)</subject><subject>MIMO communication</subject><subject>one-bit precoding</subject><subject>Performance degradation</subject><subject>Precoding</subject><subject>Quadrature amplitude modulation</subject><subject>quadrature amplitude modulation (QAM)</subject><subject>Receivers</subject><subject>Signal processing algorithms</subject><subject>symbol error rate (SER)</subject><subject>symbol-level precoding</subject><subject>Upper bounds</subject><subject>zero-forcing (ZF)</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-BiiXOK14_YOZbyKmrUQos4Wk7iFFclKXaKxL_HpRWnWWl3RjsfQpdABgAku3meL-azASWgBlRRRlN5hHqQcUgIV_x4NzOacCHYKToLYUWIkCnwHlpMG5vcug7PvC3byjVLbJoKj9omdHa9Np1rG_xqmqXFdza4ZYPr1uPchOC-Lc7H-RS_u-4DvwxzPI9rs44R5-ikNutgLw7aR28P94vRUzKZPo5Hw0lS0kx0SSWIUlwWhkIVW_DKCFYaXsqqyFRthEhpZtKqSGsOpcyErMEKJosoBYBVrI-u97kb335tbej0qt36-EPQNPaGNCOxcR_R_VXp2xC8rfXGu0_jfzQQvaOn_-jpHT19oBdNV3uTs9b-GxRjQKRkv4qKajs</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Sohrabi, Foad</creator><creator>Liu, Ya-Feng</creator><creator>Yu, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7514-2578</orcidid><orcidid>https://orcid.org/0000-0002-7453-422X</orcidid><orcidid>https://orcid.org/0000-0002-9684-9150</orcidid></search><sort><creationdate>20180601</creationdate><title>One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling</title><author>Sohrabi, Foad ; Liu, Ya-Feng ; Yu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d508847ba21d1104da53ca4c7db98fa55629a6db6f41c7957f1e537bf1eb11e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antennas</topic><topic>Codes</topic><topic>Digital to analog conversion</topic><topic>Digital to analog converters</topic><topic>Downlink</topic><topic>Energy conversion efficiency</topic><topic>Energy transmission</topic><topic>Heuristic methods</topic><topic>Low-resolution digital-to-analog converter (DAC)</topic><topic>massive multiple-input multiple-output (MIMO)</topic><topic>MIMO communication</topic><topic>one-bit precoding</topic><topic>Performance degradation</topic><topic>Precoding</topic><topic>Quadrature amplitude modulation</topic><topic>quadrature amplitude modulation (QAM)</topic><topic>Receivers</topic><topic>Signal processing algorithms</topic><topic>symbol error rate (SER)</topic><topic>symbol-level precoding</topic><topic>Upper bounds</topic><topic>zero-forcing (ZF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohrabi, Foad</creatorcontrib><creatorcontrib>Liu, Ya-Feng</creatorcontrib><creatorcontrib>Yu, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sohrabi, Foad</au><au>Liu, Ya-Feng</au><au>Yu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>3</issue><spage>557</spage><epage>570</epage><pages>557-570</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract><![CDATA[The use of low-resolution digital-to-analog converters (DACs) for transmit precoding provides crucial energy efficiency advantage for massive multiple-input multiple-output (MIMO) implementation. This paper formulates a quadrature amplitude modulation (QAM) constellation range and a one-bit symbol-level precoding design problem for minimizing the average symbol error rate (SER) in downlink massive MIMO transmission. A tight upper bound for the SER with low-resolution DAC precoding is first derived. The derived expression suggests that the performance degradation of one-bit precoding can be interpreted as a decrease in the effective minimum distance of the QAM constellation. Using the obtained SER expression, we propose a QAM constellation range design for the single-user case. It is shown that in the massive MIMO limit, a reasonable choice for constellation range with one-bit precoding is that of the infinite-resolution precoding with per-symbol power constraint, but reduced by a factor of <inline-formula> <tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> or about 0.8. The corresponding minimum distance reduction translates to about a 2 dB gap between the performance of one-bit precoding and infinite-resolution precoding. This paper further proposes a low-complexity heuristic algorithm for the one-bit precoder design. Finally, the proposed QAM constellation range and precoder design are generalized to the multiuser downlink. We propose to scale the constellation range for the infinite-resolution zero-forcing (ZF) precoding with per-symbol power constraint by the same factor of <inline-formula><tex-math notation="LaTeX">\sqrt{2/\pi }</tex-math></inline-formula> for one-bit precoding. The proposed one-bit precoding scheme is shown to be within 2 dB of infinite-resolution ZF. In term of number of antennas, one-bit precoding requires about 50% more antennas to achieve the same performance as infinite-resolution precoding.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2018.2823267</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7514-2578</orcidid><orcidid>https://orcid.org/0000-0002-7453-422X</orcidid><orcidid>https://orcid.org/0000-0002-9684-9150</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2018-06, Vol.12 (3), p.557-570
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_2048169055
source IEEE Electronic Library (IEL)
subjects Antennas
Codes
Digital to analog conversion
Digital to analog converters
Downlink
Energy conversion efficiency
Energy transmission
Heuristic methods
Low-resolution digital-to-analog converter (DAC)
massive multiple-input multiple-output (MIMO)
MIMO communication
one-bit precoding
Performance degradation
Precoding
Quadrature amplitude modulation
quadrature amplitude modulation (QAM)
Receivers
Signal processing algorithms
symbol error rate (SER)
symbol-level precoding
Upper bounds
zero-forcing (ZF)
title One-Bit Precoding and Constellation Range Design for Massive MIMO With QAM Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Bit%20Precoding%20and%20Constellation%20Range%20Design%20for%20Massive%20MIMO%20With%20QAM%20Signaling&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Sohrabi,%20Foad&rft.date=2018-06-01&rft.volume=12&rft.issue=3&rft.spage=557&rft.epage=570&rft.pages=557-570&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2018.2823267&rft_dat=%3Cproquest_RIE%3E2048169055%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2048169055&rft_id=info:pmid/&rft_ieee_id=8331077&rfr_iscdi=true