Nanoscale coaxial focused electrohydrodynamic jet printing

Controlled patterning of nanostructures at desired positions is of great importance for high-performance M/NEMS devices. Here, we demonstrate a high-resolution, high-speed and cost-effective fabrication method, named coaxial focused electrohydrodynamic jet printing, to print functional nanostructure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-01, Vol.10 (21), p.9867-9879
Hauptverfasser: Wang, Dazhi, Zhao, Xiaojun, Lin, Yigao, Liang, Junsheng, Ren, Tongqun, Liu, Zhenghao, Li, Jiangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9879
container_issue 21
container_start_page 9867
container_title Nanoscale
container_volume 10
creator Wang, Dazhi
Zhao, Xiaojun
Lin, Yigao
Liang, Junsheng
Ren, Tongqun
Liu, Zhenghao
Li, Jiangyu
description Controlled patterning of nanostructures at desired positions is of great importance for high-performance M/NEMS devices. Here, we demonstrate a high-resolution, high-speed and cost-effective fabrication method, named coaxial focused electrohydrodynamic jet printing, to print functional nanostructures. A coaxial needle was designed and developed; a functional ink and high viscosity liquid are applied in the inner and outer needle, respectively. Under optimised conditions, a stable coaxial jet is formed; then, the electrical shearing force and electrical field induce viscous shearing force and internal pressure that are jointly applied on the inner functional ink, focusing the inner jet on the nanoscale. Using this stable coaxial jet with a nano-jet inside it, nanostructures with highly aligned nanowire arrays, nano-freebeams and nano-cantilever beams down to the scale of 40 nm were directly printed. The needle size was 130 μm, and the ratio of the sizes of the needle and the printed structure was as high as 3250/1. This technique realizes the controllable printing of nanoscale structures with the use of a one hundred micrometer-sized needle. The printed PZT nanostructures exhibit pure perovskite structures and distinct piezoelectric responses.
doi_str_mv 10.1039/c8nr01001c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047949474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047949474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-8beb735e1d57d077d230f755d04a21c27edfde11c737734aac379504bc9054fa3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMo7rp68QdIwZtQnXy0abxJ8QuWFUTPJZ2k2tJt1qQF---t7rqnmcPD-848hJxTuKbA1Q1mnQcKQPGAzBkIiDmX7HC_p2JGTkJoAFLFU35MZkylqQAFc3K70p0LqFsbodPftW6jyuEQrIlsa7H37nM03pmx0-sao8b20cbXXV93H6fkqNJtsGe7uSDvD_dv-VO8fHl8zu-WMbKM93FW2lLyxFKTSANSGsahkkliQGhGkUlrKmMpRcml5EJr5FIlIEpUkIhK8wW53OZuvPsabOiLxg2-myqL6UGphBJSTNTVlkLvQvC2KqY719qPBYXiV1ORZ6vXP035BF_sIodybc0e_ffCfwACMWIN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047949474</pqid></control><display><type>article</type><title>Nanoscale coaxial focused electrohydrodynamic jet printing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Dazhi ; Zhao, Xiaojun ; Lin, Yigao ; Liang, Junsheng ; Ren, Tongqun ; Liu, Zhenghao ; Li, Jiangyu</creator><creatorcontrib>Wang, Dazhi ; Zhao, Xiaojun ; Lin, Yigao ; Liang, Junsheng ; Ren, Tongqun ; Liu, Zhenghao ; Li, Jiangyu</creatorcontrib><description>Controlled patterning of nanostructures at desired positions is of great importance for high-performance M/NEMS devices. Here, we demonstrate a high-resolution, high-speed and cost-effective fabrication method, named coaxial focused electrohydrodynamic jet printing, to print functional nanostructures. A coaxial needle was designed and developed; a functional ink and high viscosity liquid are applied in the inner and outer needle, respectively. Under optimised conditions, a stable coaxial jet is formed; then, the electrical shearing force and electrical field induce viscous shearing force and internal pressure that are jointly applied on the inner functional ink, focusing the inner jet on the nanoscale. Using this stable coaxial jet with a nano-jet inside it, nanostructures with highly aligned nanowire arrays, nano-freebeams and nano-cantilever beams down to the scale of 40 nm were directly printed. The needle size was 130 μm, and the ratio of the sizes of the needle and the printed structure was as high as 3250/1. This technique realizes the controllable printing of nanoscale structures with the use of a one hundred micrometer-sized needle. The printed PZT nanostructures exhibit pure perovskite structures and distinct piezoelectric responses.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c8nr01001c</identifier><identifier>PMID: 29664090</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Cantilever beams ; Electrohydrodynamics ; Internal pressure ; Jet printing ; Nanoelectromechanical systems ; Nanostructure ; Nanowires ; Perovskites ; Piezoelectricity ; Shearing ; Stability</subject><ispartof>Nanoscale, 2018-01, Vol.10 (21), p.9867-9879</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-8beb735e1d57d077d230f755d04a21c27edfde11c737734aac379504bc9054fa3</citedby><cites>FETCH-LOGICAL-c283t-8beb735e1d57d077d230f755d04a21c27edfde11c737734aac379504bc9054fa3</cites><orcidid>0000-0003-0533-1397 ; 0000-0003-0038-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29664090$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Dazhi</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Lin, Yigao</creatorcontrib><creatorcontrib>Liang, Junsheng</creatorcontrib><creatorcontrib>Ren, Tongqun</creatorcontrib><creatorcontrib>Liu, Zhenghao</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><title>Nanoscale coaxial focused electrohydrodynamic jet printing</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Controlled patterning of nanostructures at desired positions is of great importance for high-performance M/NEMS devices. Here, we demonstrate a high-resolution, high-speed and cost-effective fabrication method, named coaxial focused electrohydrodynamic jet printing, to print functional nanostructures. A coaxial needle was designed and developed; a functional ink and high viscosity liquid are applied in the inner and outer needle, respectively. Under optimised conditions, a stable coaxial jet is formed; then, the electrical shearing force and electrical field induce viscous shearing force and internal pressure that are jointly applied on the inner functional ink, focusing the inner jet on the nanoscale. Using this stable coaxial jet with a nano-jet inside it, nanostructures with highly aligned nanowire arrays, nano-freebeams and nano-cantilever beams down to the scale of 40 nm were directly printed. The needle size was 130 μm, and the ratio of the sizes of the needle and the printed structure was as high as 3250/1. This technique realizes the controllable printing of nanoscale structures with the use of a one hundred micrometer-sized needle. The printed PZT nanostructures exhibit pure perovskite structures and distinct piezoelectric responses.</description><subject>Cantilever beams</subject><subject>Electrohydrodynamics</subject><subject>Internal pressure</subject><subject>Jet printing</subject><subject>Nanoelectromechanical systems</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Perovskites</subject><subject>Piezoelectricity</subject><subject>Shearing</subject><subject>Stability</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAQhoMo7rp68QdIwZtQnXy0abxJ8QuWFUTPJZ2k2tJt1qQF---t7rqnmcPD-848hJxTuKbA1Q1mnQcKQPGAzBkIiDmX7HC_p2JGTkJoAFLFU35MZkylqQAFc3K70p0LqFsbodPftW6jyuEQrIlsa7H37nM03pmx0-sao8b20cbXXV93H6fkqNJtsGe7uSDvD_dv-VO8fHl8zu-WMbKM93FW2lLyxFKTSANSGsahkkliQGhGkUlrKmMpRcml5EJr5FIlIEpUkIhK8wW53OZuvPsabOiLxg2-myqL6UGphBJSTNTVlkLvQvC2KqY719qPBYXiV1ORZ6vXP035BF_sIodybc0e_ffCfwACMWIN</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Dazhi</creator><creator>Zhao, Xiaojun</creator><creator>Lin, Yigao</creator><creator>Liang, Junsheng</creator><creator>Ren, Tongqun</creator><creator>Liu, Zhenghao</creator><creator>Li, Jiangyu</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0533-1397</orcidid><orcidid>https://orcid.org/0000-0003-0038-0771</orcidid></search><sort><creationdate>20180101</creationdate><title>Nanoscale coaxial focused electrohydrodynamic jet printing</title><author>Wang, Dazhi ; Zhao, Xiaojun ; Lin, Yigao ; Liang, Junsheng ; Ren, Tongqun ; Liu, Zhenghao ; Li, Jiangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-8beb735e1d57d077d230f755d04a21c27edfde11c737734aac379504bc9054fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cantilever beams</topic><topic>Electrohydrodynamics</topic><topic>Internal pressure</topic><topic>Jet printing</topic><topic>Nanoelectromechanical systems</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Perovskites</topic><topic>Piezoelectricity</topic><topic>Shearing</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dazhi</creatorcontrib><creatorcontrib>Zhao, Xiaojun</creatorcontrib><creatorcontrib>Lin, Yigao</creatorcontrib><creatorcontrib>Liang, Junsheng</creatorcontrib><creatorcontrib>Ren, Tongqun</creatorcontrib><creatorcontrib>Liu, Zhenghao</creatorcontrib><creatorcontrib>Li, Jiangyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dazhi</au><au>Zhao, Xiaojun</au><au>Lin, Yigao</au><au>Liang, Junsheng</au><au>Ren, Tongqun</au><au>Liu, Zhenghao</au><au>Li, Jiangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale coaxial focused electrohydrodynamic jet printing</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>21</issue><spage>9867</spage><epage>9879</epage><pages>9867-9879</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Controlled patterning of nanostructures at desired positions is of great importance for high-performance M/NEMS devices. Here, we demonstrate a high-resolution, high-speed and cost-effective fabrication method, named coaxial focused electrohydrodynamic jet printing, to print functional nanostructures. A coaxial needle was designed and developed; a functional ink and high viscosity liquid are applied in the inner and outer needle, respectively. Under optimised conditions, a stable coaxial jet is formed; then, the electrical shearing force and electrical field induce viscous shearing force and internal pressure that are jointly applied on the inner functional ink, focusing the inner jet on the nanoscale. Using this stable coaxial jet with a nano-jet inside it, nanostructures with highly aligned nanowire arrays, nano-freebeams and nano-cantilever beams down to the scale of 40 nm were directly printed. The needle size was 130 μm, and the ratio of the sizes of the needle and the printed structure was as high as 3250/1. This technique realizes the controllable printing of nanoscale structures with the use of a one hundred micrometer-sized needle. The printed PZT nanostructures exhibit pure perovskite structures and distinct piezoelectric responses.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29664090</pmid><doi>10.1039/c8nr01001c</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0533-1397</orcidid><orcidid>https://orcid.org/0000-0003-0038-0771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-01, Vol.10 (21), p.9867-9879
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_journals_2047949474
source Royal Society Of Chemistry Journals 2008-
subjects Cantilever beams
Electrohydrodynamics
Internal pressure
Jet printing
Nanoelectromechanical systems
Nanostructure
Nanowires
Perovskites
Piezoelectricity
Shearing
Stability
title Nanoscale coaxial focused electrohydrodynamic jet printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20coaxial%20focused%20electrohydrodynamic%20jet%20printing&rft.jtitle=Nanoscale&rft.au=Wang,%20Dazhi&rft.date=2018-01-01&rft.volume=10&rft.issue=21&rft.spage=9867&rft.epage=9879&rft.pages=9867-9879&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c8nr01001c&rft_dat=%3Cproquest_cross%3E2047949474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047949474&rft_id=info:pmid/29664090&rfr_iscdi=true