Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems

Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-04, Vol.54 (4), p.3162-3175
Hauptverfasser: Mason, E., Giuliani, M., Castelletti, A., Amigoni, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3175
container_issue 4
container_start_page 3162
container_title Water resources research
container_volume 54
creator Mason, E.
Giuliani, M.
Castelletti, A.
Amigoni, F.
description Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations. Key Points We explore how variability in hydroclimatic forcing may produce a change in the preferences of multipurpose water systems' operators We map the identification of the preference among multiple objectives onto a multilateral negotiation process We model preference dynamics via periodic negotiations implementing the availability bias concept from cognitive psychology
doi_str_mv 10.1002/2017WR021431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047464595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047464595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3457-fbb29ed000a3e5abc3a58b5dd510a982bf6d575c2cc3e0fe617a3c790758fc5c3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv_oAFr0Znv7LNUWrVQkWJSk8SNpuJbEmTuJso-fem1IMnT8MLDzPvPIScM7hiAPyaA9PrFDiTgh2QCUukjHSixSGZAEgRMZHoY3ISwgaASRXrCXlfFlh3rhxc_UFNXdDHpsBqF26H2mydpc8eS_RYW6SLr6bqO9fU1NX0sa861_a-bQLStenQ0xRD03uLgb4MocNtOCVHpakCnv3OKXm7W7zOH6LV0_1yfrOKrJBKR2We8wQLADAClcmtMGqWq6JQDEwy43kZF0ory60VCCXGTBthdQJazUqrrJiSi_3e1jefPYYu24xF6vFkxkFqGUuVqJG63FPWNyGMb2Wtd1vjh4xBthOY_RU44mKPf7sKh3_ZbJ3OUy7Y6PoHVWtzMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047464595</pqid></control><display><type>article</type><title>Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mason, E. ; Giuliani, M. ; Castelletti, A. ; Amigoni, F.</creator><creatorcontrib>Mason, E. ; Giuliani, M. ; Castelletti, A. ; Amigoni, F.</creatorcontrib><description>Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations. Key Points We explore how variability in hydroclimatic forcing may produce a change in the preferences of multipurpose water systems' operators We map the identification of the preference among multiple objectives onto a multilateral negotiation process We model preference dynamics via periodic negotiations implementing the availability bias concept from cognitive psychology</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR021431</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aversion ; Cognitive ability ; Cognitive psychology ; Computer simulation ; coupled human‐natural systems ; Dynamics ; Evolution ; Flood control ; Frameworks ; Lakes ; Mathematical analysis ; Mathematical models ; Modelling ; multipurpose reservoir ; negotiation protocol ; Numerical models ; Objectives ; Policies ; Preferences ; Risk aversion ; Socioeconomics ; sociohydrology ; tradeoff analysis ; Tradeoffs ; water management ; Water resources ; Water supply</subject><ispartof>Water resources research, 2018-04, Vol.54 (4), p.3162-3175</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3457-fbb29ed000a3e5abc3a58b5dd510a982bf6d575c2cc3e0fe617a3c790758fc5c3</citedby><cites>FETCH-LOGICAL-c3457-fbb29ed000a3e5abc3a58b5dd510a982bf6d575c2cc3e0fe617a3c790758fc5c3</cites><orcidid>0000-0002-4780-9347 ; 0000-0001-8146-6213 ; 0000-0002-7923-1498 ; 0000-0002-4476-8164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR021431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR021431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Mason, E.</creatorcontrib><creatorcontrib>Giuliani, M.</creatorcontrib><creatorcontrib>Castelletti, A.</creatorcontrib><creatorcontrib>Amigoni, F.</creatorcontrib><title>Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems</title><title>Water resources research</title><description>Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations. Key Points We explore how variability in hydroclimatic forcing may produce a change in the preferences of multipurpose water systems' operators We map the identification of the preference among multiple objectives onto a multilateral negotiation process We model preference dynamics via periodic negotiations implementing the availability bias concept from cognitive psychology</description><subject>Aversion</subject><subject>Cognitive ability</subject><subject>Cognitive psychology</subject><subject>Computer simulation</subject><subject>coupled human‐natural systems</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Flood control</subject><subject>Frameworks</subject><subject>Lakes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>multipurpose reservoir</subject><subject>negotiation protocol</subject><subject>Numerical models</subject><subject>Objectives</subject><subject>Policies</subject><subject>Preferences</subject><subject>Risk aversion</subject><subject>Socioeconomics</subject><subject>sociohydrology</subject><subject>tradeoff analysis</subject><subject>Tradeoffs</subject><subject>water management</subject><subject>Water resources</subject><subject>Water supply</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZv_oAFr0Znv7LNUWrVQkWJSk8SNpuJbEmTuJso-fem1IMnT8MLDzPvPIScM7hiAPyaA9PrFDiTgh2QCUukjHSixSGZAEgRMZHoY3ISwgaASRXrCXlfFlh3rhxc_UFNXdDHpsBqF26H2mydpc8eS_RYW6SLr6bqO9fU1NX0sa861_a-bQLStenQ0xRD03uLgb4MocNtOCVHpakCnv3OKXm7W7zOH6LV0_1yfrOKrJBKR2We8wQLADAClcmtMGqWq6JQDEwy43kZF0ory60VCCXGTBthdQJazUqrrJiSi_3e1jefPYYu24xF6vFkxkFqGUuVqJG63FPWNyGMb2Wtd1vjh4xBthOY_RU44mKPf7sKh3_ZbJ3OUy7Y6PoHVWtzMg</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Mason, E.</creator><creator>Giuliani, M.</creator><creator>Castelletti, A.</creator><creator>Amigoni, F.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4780-9347</orcidid><orcidid>https://orcid.org/0000-0001-8146-6213</orcidid><orcidid>https://orcid.org/0000-0002-7923-1498</orcidid><orcidid>https://orcid.org/0000-0002-4476-8164</orcidid></search><sort><creationdate>201804</creationdate><title>Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems</title><author>Mason, E. ; Giuliani, M. ; Castelletti, A. ; Amigoni, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3457-fbb29ed000a3e5abc3a58b5dd510a982bf6d575c2cc3e0fe617a3c790758fc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aversion</topic><topic>Cognitive ability</topic><topic>Cognitive psychology</topic><topic>Computer simulation</topic><topic>coupled human‐natural systems</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Flood control</topic><topic>Frameworks</topic><topic>Lakes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>multipurpose reservoir</topic><topic>negotiation protocol</topic><topic>Numerical models</topic><topic>Objectives</topic><topic>Policies</topic><topic>Preferences</topic><topic>Risk aversion</topic><topic>Socioeconomics</topic><topic>sociohydrology</topic><topic>tradeoff analysis</topic><topic>Tradeoffs</topic><topic>water management</topic><topic>Water resources</topic><topic>Water supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mason, E.</creatorcontrib><creatorcontrib>Giuliani, M.</creatorcontrib><creatorcontrib>Castelletti, A.</creatorcontrib><creatorcontrib>Amigoni, F.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mason, E.</au><au>Giuliani, M.</au><au>Castelletti, A.</au><au>Amigoni, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems</atitle><jtitle>Water resources research</jtitle><date>2018-04</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>3162</spage><epage>3175</epage><pages>3162-3175</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations. Key Points We explore how variability in hydroclimatic forcing may produce a change in the preferences of multipurpose water systems' operators We map the identification of the preference among multiple objectives onto a multilateral negotiation process We model preference dynamics via periodic negotiations implementing the availability bias concept from cognitive psychology</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017WR021431</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4780-9347</orcidid><orcidid>https://orcid.org/0000-0001-8146-6213</orcidid><orcidid>https://orcid.org/0000-0002-7923-1498</orcidid><orcidid>https://orcid.org/0000-0002-4476-8164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-04, Vol.54 (4), p.3162-3175
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2047464595
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aversion
Cognitive ability
Cognitive psychology
Computer simulation
coupled human‐natural systems
Dynamics
Evolution
Flood control
Frameworks
Lakes
Mathematical analysis
Mathematical models
Modelling
multipurpose reservoir
negotiation protocol
Numerical models
Objectives
Policies
Preferences
Risk aversion
Socioeconomics
sociohydrology
tradeoff analysis
Tradeoffs
water management
Water resources
Water supply
title Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20and%20Modeling%20Dynamic%20Preference%20Evolution%20in%20Multipurpose%20Water%20Resources%20Systems&rft.jtitle=Water%20resources%20research&rft.au=Mason,%20E.&rft.date=2018-04&rft.volume=54&rft.issue=4&rft.spage=3162&rft.epage=3175&rft.pages=3162-3175&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR021431&rft_dat=%3Cproquest_cross%3E2047464595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047464595&rft_id=info:pmid/&rfr_iscdi=true