A Model for Mass Transport Across the Sediment‐Water Interface

Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-04, Vol.54 (4), p.2799-2812
Hauptverfasser: Voermans, Joey J., Ghisalberti, Marco, Ivey, Gregory N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2812
container_issue 4
container_start_page 2799
container_title Water resources research
container_volume 54
creator Voermans, Joey J.
Ghisalberti, Marco
Ivey, Gregory N.
description Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number ReK=Ku∗/ν, where K is the sediment permeability, u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime ( ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive ( O(0.01)
doi_str_mv 10.1002/2017WR022418
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047463233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047463233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqzQcIeHV1JpltNjdL8aPQItRKjyHdnWBLu1uzW6Q3H8Fn9ElcrQdPXmZg-DEz_IU4R7hCAHWtAM1sAkoRZgeig5YoMdboQ9EBIJ2gtuZYnNT1EgAp7ZmOuOnLcVXwSoYqyrGvazmNvqw3VWxkP49VO2heWD5xsVhz2Xy-f8x8w1EOy7YGn_OpOAp-VfPZb--K57vb6eAhGT3eDwf9UZITok1CbjDLbMEUPBEVuhdSb63NMA0mA5WlyDhHmLPlOZLmIg0aUiDgTOdkdFdc7PduYvW65bpxy2oby_akU0CGelpp3arLvfp5PXJwm7hY-7hzCO47I_c3o5brPX9brHj3r3WzyWCiNFqrvwAVzGaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047463233</pqid></control><display><type>article</type><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</creator><creatorcontrib>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</creatorcontrib><description>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number ReK=Ku∗/ν, where K is the sediment permeability, u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime ( ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive ( O(0.01)&lt;ReK&lt;O(1)) and turbulent regimes ( ReK≥O(1)), the mass diffusivity is directly proportional to (Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models. Key Points The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR022418</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aquatic environment ; Computational fluid dynamics ; Diffusion ; Diffusion coefficient ; Dye dispersion ; Dynamics ; Eddy diffusion ; Fluid flow ; Fluxes ; hydrodynamics ; Mass flux ; Mass transport ; Molecular chains ; Molecular diffusion ; Mud-water interfaces ; Particle tracking velocimetry ; Permeability ; Reynolds number ; Sediment ; Sediments ; sediment‐water interface ; Tracers ; Transport ; transport model ; Transport processes ; turbulence ; Turbulent diffusion ; Velocity measurement ; Viscosity</subject><ispartof>Water resources research, 2018-04, Vol.54 (4), p.2799-2812</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</citedby><cites>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</cites><orcidid>0000-0002-2963-3763 ; 0000-0003-2469-2470 ; 0000-0002-6690-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR022418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR022418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Voermans, Joey J.</creatorcontrib><creatorcontrib>Ghisalberti, Marco</creatorcontrib><creatorcontrib>Ivey, Gregory N.</creatorcontrib><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><title>Water resources research</title><description>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number ReK=Ku∗/ν, where K is the sediment permeability, u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime ( ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive ( O(0.01)&lt;ReK&lt;O(1)) and turbulent regimes ( ReK≥O(1)), the mass diffusivity is directly proportional to (Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models. Key Points The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</description><subject>Aquatic environment</subject><subject>Computational fluid dynamics</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Dye dispersion</subject><subject>Dynamics</subject><subject>Eddy diffusion</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>hydrodynamics</subject><subject>Mass flux</subject><subject>Mass transport</subject><subject>Molecular chains</subject><subject>Molecular diffusion</subject><subject>Mud-water interfaces</subject><subject>Particle tracking velocimetry</subject><subject>Permeability</subject><subject>Reynolds number</subject><subject>Sediment</subject><subject>Sediments</subject><subject>sediment‐water interface</subject><subject>Tracers</subject><subject>Transport</subject><subject>transport model</subject><subject>Transport processes</subject><subject>turbulence</subject><subject>Turbulent diffusion</subject><subject>Velocity measurement</subject><subject>Viscosity</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqzQcIeHV1JpltNjdL8aPQItRKjyHdnWBLu1uzW6Q3H8Fn9ElcrQdPXmZg-DEz_IU4R7hCAHWtAM1sAkoRZgeig5YoMdboQ9EBIJ2gtuZYnNT1EgAp7ZmOuOnLcVXwSoYqyrGvazmNvqw3VWxkP49VO2heWD5xsVhz2Xy-f8x8w1EOy7YGn_OpOAp-VfPZb--K57vb6eAhGT3eDwf9UZITok1CbjDLbMEUPBEVuhdSb63NMA0mA5WlyDhHmLPlOZLmIg0aUiDgTOdkdFdc7PduYvW65bpxy2oby_akU0CGelpp3arLvfp5PXJwm7hY-7hzCO47I_c3o5brPX9brHj3r3WzyWCiNFqrvwAVzGaz</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Voermans, Joey J.</creator><creator>Ghisalberti, Marco</creator><creator>Ivey, Gregory N.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><orcidid>https://orcid.org/0000-0003-2469-2470</orcidid><orcidid>https://orcid.org/0000-0002-6690-8922</orcidid></search><sort><creationdate>201804</creationdate><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><author>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic environment</topic><topic>Computational fluid dynamics</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Dye dispersion</topic><topic>Dynamics</topic><topic>Eddy diffusion</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>hydrodynamics</topic><topic>Mass flux</topic><topic>Mass transport</topic><topic>Molecular chains</topic><topic>Molecular diffusion</topic><topic>Mud-water interfaces</topic><topic>Particle tracking velocimetry</topic><topic>Permeability</topic><topic>Reynolds number</topic><topic>Sediment</topic><topic>Sediments</topic><topic>sediment‐water interface</topic><topic>Tracers</topic><topic>Transport</topic><topic>transport model</topic><topic>Transport processes</topic><topic>turbulence</topic><topic>Turbulent diffusion</topic><topic>Velocity measurement</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voermans, Joey J.</creatorcontrib><creatorcontrib>Ghisalberti, Marco</creatorcontrib><creatorcontrib>Ivey, Gregory N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voermans, Joey J.</au><au>Ghisalberti, Marco</au><au>Ivey, Gregory N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Mass Transport Across the Sediment‐Water Interface</atitle><jtitle>Water resources research</jtitle><date>2018-04</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>2799</spage><epage>2812</epage><pages>2799-2812</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number ReK=Ku∗/ν, where K is the sediment permeability, u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime ( ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive ( O(0.01)&lt;ReK&lt;O(1)) and turbulent regimes ( ReK≥O(1)), the mass diffusivity is directly proportional to (Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models. Key Points The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2017WR022418</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><orcidid>https://orcid.org/0000-0003-2469-2470</orcidid><orcidid>https://orcid.org/0000-0002-6690-8922</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-04, Vol.54 (4), p.2799-2812
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2047463233
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aquatic environment
Computational fluid dynamics
Diffusion
Diffusion coefficient
Dye dispersion
Dynamics
Eddy diffusion
Fluid flow
Fluxes
hydrodynamics
Mass flux
Mass transport
Molecular chains
Molecular diffusion
Mud-water interfaces
Particle tracking velocimetry
Permeability
Reynolds number
Sediment
Sediments
sediment‐water interface
Tracers
Transport
transport model
Transport processes
turbulence
Turbulent diffusion
Velocity measurement
Viscosity
title A Model for Mass Transport Across the Sediment‐Water Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Mass%20Transport%20Across%20the%20Sediment%E2%80%90Water%20Interface&rft.jtitle=Water%20resources%20research&rft.au=Voermans,%20Joey%20J.&rft.date=2018-04&rft.volume=54&rft.issue=4&rft.spage=2799&rft.epage=2812&rft.pages=2799-2812&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR022418&rft_dat=%3Cproquest_cross%3E2047463233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047463233&rft_id=info:pmid/&rfr_iscdi=true