A Model for Mass Transport Across the Sediment‐Water Interface
Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccess...
Gespeichert in:
Veröffentlicht in: | Water resources research 2018-04, Vol.54 (4), p.2799-2812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2812 |
---|---|
container_issue | 4 |
container_start_page | 2799 |
container_title | Water resources research |
container_volume | 54 |
creator | Voermans, Joey J. Ghisalberti, Marco Ivey, Gregory N. |
description | Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number
ReK=Ku∗/ν, where K is the sediment permeability,
u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime (
ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive (
O(0.01) |
doi_str_mv | 10.1002/2017WR022418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2047463233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2047463233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqzQcIeHV1JpltNjdL8aPQItRKjyHdnWBLu1uzW6Q3H8Fn9ElcrQdPXmZg-DEz_IU4R7hCAHWtAM1sAkoRZgeig5YoMdboQ9EBIJ2gtuZYnNT1EgAp7ZmOuOnLcVXwSoYqyrGvazmNvqw3VWxkP49VO2heWD5xsVhz2Xy-f8x8w1EOy7YGn_OpOAp-VfPZb--K57vb6eAhGT3eDwf9UZITok1CbjDLbMEUPBEVuhdSb63NMA0mA5WlyDhHmLPlOZLmIg0aUiDgTOdkdFdc7PduYvW65bpxy2oby_akU0CGelpp3arLvfp5PXJwm7hY-7hzCO47I_c3o5brPX9brHj3r3WzyWCiNFqrvwAVzGaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047463233</pqid></control><display><type>article</type><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</creator><creatorcontrib>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</creatorcontrib><description>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number
ReK=Ku∗/ν, where K is the sediment permeability,
u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime (
ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive (
O(0.01)<ReK<O(1)) and turbulent regimes (
ReK≥O(1)), the mass diffusivity is directly proportional to
(Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models.
Key Points
The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface
Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux
A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2017WR022418</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Aquatic environment ; Computational fluid dynamics ; Diffusion ; Diffusion coefficient ; Dye dispersion ; Dynamics ; Eddy diffusion ; Fluid flow ; Fluxes ; hydrodynamics ; Mass flux ; Mass transport ; Molecular chains ; Molecular diffusion ; Mud-water interfaces ; Particle tracking velocimetry ; Permeability ; Reynolds number ; Sediment ; Sediments ; sediment‐water interface ; Tracers ; Transport ; transport model ; Transport processes ; turbulence ; Turbulent diffusion ; Velocity measurement ; Viscosity</subject><ispartof>Water resources research, 2018-04, Vol.54 (4), p.2799-2812</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</citedby><cites>FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</cites><orcidid>0000-0002-2963-3763 ; 0000-0003-2469-2470 ; 0000-0002-6690-8922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017WR022418$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017WR022418$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids></links><search><creatorcontrib>Voermans, Joey J.</creatorcontrib><creatorcontrib>Ghisalberti, Marco</creatorcontrib><creatorcontrib>Ivey, Gregory N.</creatorcontrib><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><title>Water resources research</title><description>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number
ReK=Ku∗/ν, where K is the sediment permeability,
u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime (
ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive (
O(0.01)<ReK<O(1)) and turbulent regimes (
ReK≥O(1)), the mass diffusivity is directly proportional to
(Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models.
Key Points
The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface
Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux
A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</description><subject>Aquatic environment</subject><subject>Computational fluid dynamics</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Dye dispersion</subject><subject>Dynamics</subject><subject>Eddy diffusion</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>hydrodynamics</subject><subject>Mass flux</subject><subject>Mass transport</subject><subject>Molecular chains</subject><subject>Molecular diffusion</subject><subject>Mud-water interfaces</subject><subject>Particle tracking velocimetry</subject><subject>Permeability</subject><subject>Reynolds number</subject><subject>Sediment</subject><subject>Sediments</subject><subject>sediment‐water interface</subject><subject>Tracers</subject><subject>Transport</subject><subject>transport model</subject><subject>Transport processes</subject><subject>turbulence</subject><subject>Turbulent diffusion</subject><subject>Velocity measurement</subject><subject>Viscosity</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqzQcIeHV1JpltNjdL8aPQItRKjyHdnWBLu1uzW6Q3H8Fn9ElcrQdPXmZg-DEz_IU4R7hCAHWtAM1sAkoRZgeig5YoMdboQ9EBIJ2gtuZYnNT1EgAp7ZmOuOnLcVXwSoYqyrGvazmNvqw3VWxkP49VO2heWD5xsVhz2Xy-f8x8w1EOy7YGn_OpOAp-VfPZb--K57vb6eAhGT3eDwf9UZITok1CbjDLbMEUPBEVuhdSb63NMA0mA5WlyDhHmLPlOZLmIg0aUiDgTOdkdFdc7PduYvW65bpxy2oby_akU0CGelpp3arLvfp5PXJwm7hY-7hzCO47I_c3o5brPX9brHj3r3WzyWCiNFqrvwAVzGaz</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Voermans, Joey J.</creator><creator>Ghisalberti, Marco</creator><creator>Ivey, Gregory N.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><orcidid>https://orcid.org/0000-0003-2469-2470</orcidid><orcidid>https://orcid.org/0000-0002-6690-8922</orcidid></search><sort><creationdate>201804</creationdate><title>A Model for Mass Transport Across the Sediment‐Water Interface</title><author>Voermans, Joey J. ; Ghisalberti, Marco ; Ivey, Gregory N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-fc71889de4fa444d36f5a999815f7802851e1b10be9eb143ed5f305040e83c473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic environment</topic><topic>Computational fluid dynamics</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Dye dispersion</topic><topic>Dynamics</topic><topic>Eddy diffusion</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>hydrodynamics</topic><topic>Mass flux</topic><topic>Mass transport</topic><topic>Molecular chains</topic><topic>Molecular diffusion</topic><topic>Mud-water interfaces</topic><topic>Particle tracking velocimetry</topic><topic>Permeability</topic><topic>Reynolds number</topic><topic>Sediment</topic><topic>Sediments</topic><topic>sediment‐water interface</topic><topic>Tracers</topic><topic>Transport</topic><topic>transport model</topic><topic>Transport processes</topic><topic>turbulence</topic><topic>Turbulent diffusion</topic><topic>Velocity measurement</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voermans, Joey J.</creatorcontrib><creatorcontrib>Ghisalberti, Marco</creatorcontrib><creatorcontrib>Ivey, Gregory N.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voermans, Joey J.</au><au>Ghisalberti, Marco</au><au>Ivey, Gregory N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model for Mass Transport Across the Sediment‐Water Interface</atitle><jtitle>Water resources research</jtitle><date>2018-04</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>2799</spage><epage>2812</epage><pages>2799-2812</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Molecular diffusion, dispersion, and turbulent diffusion can all contribute to the transport of mass across the sediment‐water interface (SWI). Flow observations across the SWI are critical in the description of these transport processes but are currently very limited as the sediment bed is inaccessible in most experimental approaches. We overcome this constraint by combining refractive‐index matching (RIM) with particle‐tracking velocimetry (PTV). Using measurements of the flow dynamics across the SWI, we propose a mechanistic model that describes the interfacial mass transport over a wide and relevant parameter space. We show there are three transport regimes where molecular, dispersive, or turbulent transport dominates the mass flux of a passive tracer across the SWI. Transitions between these regimes are defined by the permeability Reynolds number
ReK=Ku∗/ν, where K is the sediment permeability,
u∗ is the shear velocity, and ν is the fluid viscosity. In the molecular regime (
ReK≤O(0.01)), mass transport is described by the molecular diffusion coefficient (D). In both the dispersive (
O(0.01)<ReK<O(1)) and turbulent regimes (
ReK≥O(1)), the mass diffusivity is directly proportional to
(Ku∗)ReK. The model is strongly supported by an extensive data set of published interfacial mass flux observations and provides a tool for describing fluxes across the SWI in aquatic system models.
Key Points
The permeability Reynolds number ReK characterizes the transport processes across the sediment‐water interface
Three interfacial transport regimes exist, where molecular, dispersive, or turbulent transport dominates the interfacial mass flux
A process‐based mass transport model is presented and validated against a diverse range of experimental measurements of interfacial flux</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2017WR022418</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2963-3763</orcidid><orcidid>https://orcid.org/0000-0003-2469-2470</orcidid><orcidid>https://orcid.org/0000-0002-6690-8922</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2018-04, Vol.54 (4), p.2799-2812 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_2047463233 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aquatic environment Computational fluid dynamics Diffusion Diffusion coefficient Dye dispersion Dynamics Eddy diffusion Fluid flow Fluxes hydrodynamics Mass flux Mass transport Molecular chains Molecular diffusion Mud-water interfaces Particle tracking velocimetry Permeability Reynolds number Sediment Sediments sediment‐water interface Tracers Transport transport model Transport processes turbulence Turbulent diffusion Velocity measurement Viscosity |
title | A Model for Mass Transport Across the Sediment‐Water Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20for%20Mass%20Transport%20Across%20the%20Sediment%E2%80%90Water%20Interface&rft.jtitle=Water%20resources%20research&rft.au=Voermans,%20Joey%20J.&rft.date=2018-04&rft.volume=54&rft.issue=4&rft.spage=2799&rft.epage=2812&rft.pages=2799-2812&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2017WR022418&rft_dat=%3Cproquest_cross%3E2047463233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047463233&rft_id=info:pmid/&rfr_iscdi=true |