Computational principal-agent problems

Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical economics 2018-05, Vol.13 (2), p.553-578
Hauptverfasser: Azar, Pablo D, Micali, Silvio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 578
container_issue 2
container_start_page 553
container_title Theoretical economics
container_volume 13
creator Azar, Pablo D
Micali, Silvio
description Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε>0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.
doi_str_mv 10.3982/TE1815
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2047456633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A737120865</galeid><sourcerecordid>A737120865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4706-f25d759d81ea0e31581b9ad50a0747551632b77a1e518c6a86b33954f52d1193</originalsourceid><addsrcrecordid>eNp1kN9LwzAQx4MoOKf-B8JA2It05pJekj6OUp0w8KXvIW3T0dE2s-mQ_fdm1If5YO7h7sLnvveDkEegK54o9ppnoACvyAwQMZIo4PoiviV33u8pjcODGVmmrjscRzM2rjft4jA0fdkcTBuZne3HkLuitZ2_Jze1ab19-PVzkr9lebqJtp_vH-l6G5WxpCKqGVYSk0qBNdRyQAVFYiqkhspYIoLgrJDSgEVQpTBKFJwnGNfIKoCEz8nzJBv6fh2tH_XeHYcwmNeMxjJGITgP1Gqidqa1uulrNw6mDFbZrildb-sm_K8ll8CoEhgKllNBOTjvB1vrsGdnhpMGqs8309PNAriYQBtkGn-BsZgxpOo84suEfIcmp3-EdL7JUqZEoJ_-CJ6dH92gIZGAgv8A8jB8VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2047456633</pqid></control><display><type>article</type><title>Computational principal-agent problems</title><source>Wiley Online Library Open Access</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Azar, Pablo D ; Micali, Silvio</creator><creatorcontrib>Azar, Pablo D ; Micali, Silvio</creatorcontrib><description>Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε&gt;0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.</description><identifier>ISSN: 1555-7561</identifier><identifier>ISSN: 1933-6837</identifier><identifier>EISSN: 1555-7561</identifier><identifier>DOI: 10.3982/TE1815</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>computational complexity ; D82 ; D86 ; Data processing ; Economic models ; Economic theory ; Principal agent problems</subject><ispartof>Theoretical economics, 2018-05, Vol.13 (2), p.553-578</ispartof><rights>Copyright © 2018 The Authors.</rights><rights>COPYRIGHT 2018 John Wiley &amp; Sons, Inc.</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4706-f25d759d81ea0e31581b9ad50a0747551632b77a1e518c6a86b33954f52d1193</citedby><cites>FETCH-LOGICAL-c4706-f25d759d81ea0e31581b9ad50a0747551632b77a1e518c6a86b33954f52d1193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FTE1815$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FTE1815$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Azar, Pablo D</creatorcontrib><creatorcontrib>Micali, Silvio</creatorcontrib><title>Computational principal-agent problems</title><title>Theoretical economics</title><description>Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε&gt;0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.</description><subject>computational complexity</subject><subject>D82</subject><subject>D86</subject><subject>Data processing</subject><subject>Economic models</subject><subject>Economic theory</subject><subject>Principal agent problems</subject><issn>1555-7561</issn><issn>1933-6837</issn><issn>1555-7561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kN9LwzAQx4MoOKf-B8JA2It05pJekj6OUp0w8KXvIW3T0dE2s-mQ_fdm1If5YO7h7sLnvveDkEegK54o9ppnoACvyAwQMZIo4PoiviV33u8pjcODGVmmrjscRzM2rjft4jA0fdkcTBuZne3HkLuitZ2_Jze1ab19-PVzkr9lebqJtp_vH-l6G5WxpCKqGVYSk0qBNdRyQAVFYiqkhspYIoLgrJDSgEVQpTBKFJwnGNfIKoCEz8nzJBv6fh2tH_XeHYcwmNeMxjJGITgP1Gqidqa1uulrNw6mDFbZrildb-sm_K8ll8CoEhgKllNBOTjvB1vrsGdnhpMGqs8309PNAriYQBtkGn-BsZgxpOo84suEfIcmp3-EdL7JUqZEoJ_-CJ6dH92gIZGAgv8A8jB8VA</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Azar, Pablo D</creator><creator>Micali, Silvio</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>OT2</scope><scope>24P</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>201805</creationdate><title>Computational principal-agent problems</title><author>Azar, Pablo D ; Micali, Silvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4706-f25d759d81ea0e31581b9ad50a0747551632b77a1e518c6a86b33954f52d1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>computational complexity</topic><topic>D82</topic><topic>D86</topic><topic>Data processing</topic><topic>Economic models</topic><topic>Economic theory</topic><topic>Principal agent problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azar, Pablo D</creatorcontrib><creatorcontrib>Micali, Silvio</creatorcontrib><collection>EconStor</collection><collection>Wiley Online Library Open Access</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azar, Pablo D</au><au>Micali, Silvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational principal-agent problems</atitle><jtitle>Theoretical economics</jtitle><date>2018-05</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>553</spage><epage>578</epage><pages>553-578</pages><issn>1555-7561</issn><issn>1933-6837</issn><eissn>1555-7561</eissn><abstract>Collecting and processing large amounts of data is becoming increasingly crucialin our society. We model this task as evaluating a function f over a large vector x =(x1,...,xn), which is unknown, but drawn from a publicly known distribution X. In our model, learning each component of the input x is costly, but computing the output f(x) has zero cost once x is known. We consider the problem of a principal who wishes to delegate the evaluation of f to an agent whose cost of learning any number of components of x is always lower than the corresponding cost of the principal. We prove that, for every continuous function f and every ε&gt;0, the principal can - by learning a single component xi of x - incentivize the agent to report the correct value f(x)with accuracy ε. complexity.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/TE1815</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-7561
ispartof Theoretical economics, 2018-05, Vol.13 (2), p.553-578
issn 1555-7561
1933-6837
1555-7561
language eng
recordid cdi_proquest_journals_2047456633
source Wiley Online Library Open Access; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects computational complexity
D82
D86
Data processing
Economic models
Economic theory
Principal agent problems
title Computational principal-agent problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20principal-agent%20problems&rft.jtitle=Theoretical%20economics&rft.au=Azar,%20Pablo%20D&rft.date=2018-05&rft.volume=13&rft.issue=2&rft.spage=553&rft.epage=578&rft.pages=553-578&rft.issn=1555-7561&rft.eissn=1555-7561&rft_id=info:doi/10.3982/TE1815&rft_dat=%3Cgale_proqu%3EA737120865%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2047456633&rft_id=info:pmid/&rft_galeid=A737120865&rfr_iscdi=true